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Abstract: We develop and experiment with a new parallel algorithm to approximate the maxim
weight cut in a weighted undirected graph. Our implementation starts witrettemt (serial) algo-
rithm of Goemans and Williamson for this problem. We consider several differrsions of this
algorithm, varying the interior-point part of the algorithm in order to optimize thalpe efficiency
of our method. Our work aims for an efficient, practical formulation of the algoritvith close-
to-optimal parallelization. We analyze our parallel algorithm in the LogP mouadi@lpredict linear
speedup for a wide range of the parameters. We have implemented the algorithrthesmngssage
passing interface (MPI) and run it on several parallel machines. lrcpkat, we present performance
measurements on the IBM SP2, the Connection Machine CM5, and a cluster of worlsstat/e
observe that the measured speedups are predicted well by our analysis in the LogH-madg, we
test our implementation on several large graphs (up to 13,000 verticesgubetir on large instances
of the Ising model.
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1 Introduction

Given aweighted undirected graph= (V. F), asets C V of vertices defines the cut, V'\ 5). The
size of the cut is the sum of the weighig of all edges which connect a vertexdrwith a vertex inl"\
S,i.e.cut(S) = Yies jevi\s wij- The MAXCUT problem is the problem of finding a cut of maximum
size in the input grapliz. MAXCuT has applications in VLSI design [9, 8, 29, 6] and statistical
physics [6]. Max CuT is known to be NP-complete [24]. However, it can be approximated to within
a constant factor by polynomial time algorithms. Indeed, the greedy algorithm of Sah@Gicenzdlez
[37] finds a cut whose size is guaranteed to lie within a factdd.dfof the size of the maximum
cut. For more than 20 years this factor(®o$ was the best polynomial timgerformance guarantee
known for MAX CUT. A recent algorithm by Goemans and Williamson (GW) [16] is guaranteed to
come to within a factor of 0.878 of the optimum. This breakthrough in the design of appraimat
algorithms has lead to improved approximation algorithms for other NP-compigiddems [21, 15, 3,
13, 10]. The basis for the significant improvement are the more sophisticatedgeebmf positive
semidefinite programming and randomized rounding. However, solving semidefiniteapr®gs
computationally expensive. Previous implementations of the algorithm on secaimea could only
handle relatively small inputs (200 to 500 vertices). See Poljak and Rendid3Hlated work.

Our goals are twofold. Firstly, we want to establish the practical poggibifiusing the GW algo-
rithm for much larger input graphs of thousands of vertices within realistic amaodititee. In order
to achieve this goal, we make use of parallel computation techniques and condelentifersions
of the GW algorithm where the semidefinite program is solved using gradient-deswentterior-
point methods. We analyze our algorithm using the LogP model. This model, first proposedéday Cull
et al. [11], provides a realistic platform with which to evaluate thecedficy of algorithms on parallel
distributed memory machines. The LogP model seems to be the most accuratplandtery model
for analyzing the algorithms which we consider here. It considers point-to-point coroatiom of
processors over a network, taking into account system parameters which inahsdage overhead,
communication latency and network bandwidth, as well as the number of processodefikdéethis
model more precisely in Sect. 3. More details of and motivation for this madebe found in [11].

Secondly, we want to'determine if the theoretically superior approximationtyusdlithe GW

algorithm is_ matched by an improved performance on typical test inputs. Fquuhi®se, we have
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also implemented the greedy algorithm and simulated annealing. We obseet@aV algorithm's
solution quality is significantly better than that of the greedy algorithm, whitlwés not match the
solution quality of simulated annealing. We consider modifications to the GW digorvithich im-
prove its solution quality. We are especially interested in inputs whiehdarived from practical
applications. In particular, we investigate whether the GW algorithm oampete with the Monte
Carlo methods which are predominant in applications efX\CUT in statistical physics. Indepen-
dently of the actual cuts, the GW algorithm also produces an upper bound on the size ofrie opti
solution. This information is not provided by any of the simpler heuristics but cagutie useful

when evaluating their performances.

1.1 Previous Work

A randomized version of the greedy algorithm of Sahni and Gonzalez [37] can be atatellows:
“Given a graph, generate cuts according to the uniform distribution”. By liheafiexpectation, the
expected cut size under this distribution is half the sum of all edge weights andathesst half the
size of the optimum cut.

Goemans and Williamson [16] improve this ratio from 1/2 to 0.878 by generatirggfoun a
more sophisticated distribution: Each vertex is represented by@dmensional unit vector,. The
first step of their algorithm is to find a vector configuration (that is, a set wéctors inIR") which
solves

max Z, = —szj(l — (vi,v)) subjectto|vlz =1 VieV (1)

where(., .) is the inner product. In general, we denote constrained optimization problems ortie f
max F' = f(x) subjectto condy)

meaning that the goal is to find a solutierwhich maximizes (minimizes}y’ = f(x) and satisfies
the condition con@l:). A near-optimal solution for (1) can be found in polynomial time using a
semidefinite programming algorithm and incomplete Cholesky decomposition.

The second step of the GW algorithm is to uniformly generate random hyperplanes through the
origin. A hyperplane — given by its normal vector separates the vectors into the sbts- {v; :

(vg,r) = 0f.andR = {v; - (v;,r) < 0}. This defines a cut. The analysis of Goemans and Williamson

5 www.manaraa.com



shows that the expected cut size under this distribution is atdegst times the size of the optimum
cut. Intuitively, an edgéd:, j } has the tendency to increase the angle betweandv; in the optimal
configuration. This increases the probability that the edge is cut, as the prob&laitityb vectors are
on different sides of a random hyperplane is proportional to the angle between themgdhthal

can be derandomized by means of the method of conditional expectations [16].

1.2 Outline

The computationally expensive part of the GW algorithm is finding a near-optimal@oloiti(1). In
Sect. 2 we describe an interior-point algorithm for solving (1). Sect. 2 corgame technical details
about interior-point algorithms and might be skipped by expert readers familiathgtprimal-dual
procedure presented in Nesterov and Nemirovskii [28]. Our implementaterelatively straightfor-
ward parallelization of their method. Sect. 3 is the central section eftbrk. An alternative parallel
algorithm, which, in practice, is more efficient for sparse graphs, is desgtin this section. Itin-
cludes a detailed analysis of the parallel algorithm in the LogP model which shawgear speedup
can be achieved on most modern massively parallel machines. Furthertrdeseribes an MPI based
parallel implementation, displays performance measurements on sevelilpaachines, and com-
pares these measurements with our theoretical predictions. Finally4A3#sgcribes an experimental
comparison of the approximation quality of the GW algorithm and of simulated anndafisgveral

classes of graphs.

2 An Interior-Point Algorithm

We useY > 0 to signify that the matrix” is symmetric and positive semidefinite. Lgt be the
17-entry of a matrixy”. Goemans and Williamson [16] show that program (1) is equivalent to the

following semidefinite program.
max Z, = = »_w;(1 —y;;) subjecttoy = 0andy; =1 (i,j € V). (2)

A feasible solution of (2) can be transformed into a feasible solution of (1) thé same value via an

incomplete Cholesky decomposition.
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Semidefinite programming is a special case of convex programming which catvbd & poly-
nomial time withe-error. One allows small errors as exact optimal solutions might be non-rational
In the following we will simply speak of solving semidefinite programs (withowntioning the
small error). Nesterov and Nemirovskii [28] present a number of interior-@dgurithms for convex
programming and prove polynomial-time bounds for them. The first interior-point algasitixene
designed for linear programming by Karmarkar [22]. The namerior pointrefers to the fact that,
unlike the simplex algorithm, these algorithms approach the optimum from the intérloe poly-
hedron of feasible solutions. Alizadeh [2] generalizes Ye's algorithm foatipppgramming [41] to
semidefinite programming.

The algorithm described in this section is based on an interior point algorithrasieldv and Ne-
mirovskii [28] which belongs to the class pfimal-dual potential reduction algorithnigd1]. Primal-
dual algorithms solve the original (primal) problem and a second problem which isailaGiven
a semidefinite progran®, one can define a second semidefinite progfarby means of a simple
transformation and call it théual program ofP. In order to make such a definition useful, some facts
similar to those known about duality in linear programming Iéteong dualityor complementary
slacknesshould be shown. In linear programming, a primal-dual pair of programs consists of a max-
imization and a minimization problem. Intuitively, strong duality stdbed the value of the objective
function of the maximization problem is not larger than the value of the objectiveifumof the
minimization problem at any pair of feasible solutions of the respective prabl&urthermore, the
primal and dual solutions are optimal if and only if the values of the two objealivetions are equal.
Complementary slackness states that the inner prqdue} of any feasible solution of the primal
problemP and any feasible solutionof the dual problen) becomes zero if and only if is optimal
for P ands is optimal for D. These notions have been generalized to semidefinite programming by
several authors [28, 2].

At each moment, the primal-dual algorithm maintains a strictly feasibleatisn = of P and a
strictly feasible solutiors of D. A stepof the algorithm updates either the primal solution (primal
step) or the dual solution (dual step) in a way which tends to re¢iuce. When the inner product
becomes sufficiently small, the primal and the dual solution are close to dptima

In order to guarantee polynomial running time, the algorithm tries to minimize apaktéinction
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rather than the inner product itself. The potential function is chosen such thahizimg it implies
driving complementary slackness to zero. In addition, it should be such that fat@etly feasible
pair of solutions, either a primal step or a dual step will reduce its value lopstant amount. If the
difference between the initial value of the potential function and a value whattes complementary
slackness sufficiently small, is polynomially bounded, the algorithm will only nepdlynomial
number of steps.

After this outline of the general principle, we present now the details of the #hgoriThe first
step is to formulate a dual problem. Consider the space of symmetrie matrices (which we can
identify with ]R(:)), and chooséz, y) = Tr{xy} as the inner product on this space [28, Sect. 6.4.1],

whereTr{z} is the trace of the matrix. We consider the following pair of prima¥’) and dual D)

problems [28, Def. 4.2.1]:
(P): minimize (I, z) subjectto w+a+ >0, x;=0forall:#j
(D) : minimize (s,w) subjectto s=0, sp=1foralll <:<n ,

wherew = (w;;);; is the matrix of the edge weights 6f, and/,, is then x n identity matrix. Strong
duality and complementary slackness fét) and (D) follow from [28, Thm. 4.2.1]. Furthermore,
it is easily seen that strictly feasible solutions for both) and (D) exist. Observe that minimizing
(s,w) = Y w;js,; is the same as maximizirng w;;(1 — s;;). Our algorithm will solve( D) and this
will provide us with a solution of (2)interpretations of ) as eigenvalue minimization problems can
be found in [28, Sect. 6.6.4.3] and [16]. Similarly, Poljak and Rendl [32] have slstnong duality
between (2) and an eigenvalue minimization problem which admits a semiddé@mulation (also
cf. [28, 2, 16]). For reasons of consistency, we have stayed within the Warkef Nesterov and
Nemirovskii [28].

We have chosen the primal-dual potential reduction algorithm outlined in [28] e §61) and
(D). The algorithm is summarized in Fig. 1. It maintains a pairs), where the matrix is a strictly
feasible solution of ) and the matrix is a strictly feasible solution dfD).

The functionv(u) is derived from the potential function. The components (@f) are the loga-
rithmic barrier#'(u) = — In det v and a second terma( (s, «)/(s, ) — 1) which drives(z, s) towards
a point at which the duality gafx, s) is zero. The logarithmic barrief'(«) ensures that the Newton

steps which are used to updat@nds will always remain in the interior of the positive semidefinite

8 www.manaraa.com



Algorithm: primal-dual

Input: « (a strictly feasible solution fofP))
s (a strictly feasible solution fofD))

¢ (the required accuracy)

WHILE (2, s) > ¢
¢ = argmin{(v'(z), h) + L(v"(x)h, h)|h € L}
A=/ {v"(x)¢€)
IF A > 034 THEN o ==z + %
ELSE s := a~'(s,2)(— F'(z) — F"(2)¢)

wherev(u) = F(u) + a (% _ 1)’

F(z)=—Indetx, a=n+ 1.05y/n.

Figure 1: The basic primal-dual procedure from [28, p. 140].X) and /(=) denote the vector of
first partial derivatives (gradient) and the Hessian matrix of secortéhpderivatives off" at point:.

The notation fow is similar. The algorithm stops aftér(,/n ) iterations.
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cone. In other words, incorporating(«) (which approaches infinity near the boundary of the posi-
tive semidefinite cone) into the objective function of the unconstrained optionzatethod used to
determine the next solution, ensures that this solution will always remain avpadgfinite matrix.

The algorithm uses Newton's method to minimize). In particular¢ is the direction in which
the second-order Taylor expansion:df:) at = (projected to the feasible plane) is minimized. The
decrease of and of the potential function is at least the Newton decrementlesterov and Ne-
mirovskii show [28, Proposition 4.5.2] that as longass large enoughX > 0.34), a primal step
in the direction of¢ is guaranteed to decrease the potential function by at least a constant amount.
Otherwise § < 0.34), a dual step is guaranteed to achieve this goal. A#gyn) steps the potential
function and, therefore, the duality gap are sufficiently small.

The computational cost of each step is dominated by the cost of computing the Heasiixrof
second derivatives’(z) = I'"(x) = 2! o 2~ and inverting it [28, Sect. 6.4.1], wheue> b denotes
the Hadamard (componentwise) product of two matricesdb. The matrix inversions are needed
to computet and the direction of the dual step. Note that it is not necessary to compute the entir
Hessian matrix because all but thdiagonal entries of are constant. The matrix inversions involved
lead to a complexity 0B (n*) operations per step ariti»*°) operations for the entire algorithm.

We have implemented the same interior-point algorithm in serial on a woiksttd in parallel
on the Connection Machine CM5. The serial implementation is written in C aesl LABPACK
routines [4] for the time critical matrix inversions. Due to the fainigh complexity of the algorithm,
the running times become quite large for graphs with more tt@nvertices (Tab. 1). The running
time for a 1000 vertex graph is about one day on an SGI Indy (100MHz MIPS R4000 processor,
IRIX 5.0, gcc -0O2). However, similar behavior is displayed by other existing £o@»emans and
Williamson [16] report running times o0f692 seconds~ 77 minutes on a SUN Sparc 1 for the
widely used code of Rendl et al. [34] and 200 vertex random graphs. The correspondifigrtoue
algorithm on an SGI Indi is abodt3 minutes (Tab. 1). For comparison, the MIPS R4000 processor is
only about 5.5 times faster than the Sparc IPC processor (as measured by @ip-SRBenchmark:
61 for R4000 vs. 11.1 for Sparc IPC). While this comparison omits some detail, itiddeste
that our serial implementation — which is the basis for evaluating the peafazenof our parallel

implementations — is quite efficient. We have used random graphs here not for thagiointerest
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but rather to provide a comparison with the running times reported in [16].

The parallel program was implemented on the following CM5: 32 processors, GM@iSion
7.4; 32MBytes and four vector units per node; nodes running at 32MHz. The same machine was
used for the implementations described in Sect. 3. The parallel implenogntatvritten in C* [38].
The running time of the algorithm is completely dominated by the cost of the matexsions. Very
efficient solutions for this problem exist [20]. Using the LU routines from the CM#i&ary [39]
(version 3.2.1), our algorithm achieves speedups of morexh&over one-node CM5) on a 32-node

CM5. Table 1 compares the running times of the parallel and serial implenmergtat

3 First Derivative Methods

The interior-point algorithm described in the previous chapter is well suited fesedgraphs. How-
ever, its complexity oD (n*) operations per step leads to long running times for large graphs. This is
the case even if the input graph is sparse. Alizadeh [2] notes that the knowarhpi@int algorithms
for semidefinite programming do not take advantage of sparse inputs. (RecentiyaktelLu [25]
have developed a different technique to handle sparse graphs using these methags )oypaur
goal to test the quality of the approximation scheme of Goemans and Williamsorgeririatances
of graphs derived from practical applications, we considered alternatiye @fabtaining an optimal
vector configuration. The first derivative method described in this secti@mivies O(en + n?) op-
erations per step — which 8(rn?) for sparse graphs. Thus, we trade the worst-case guarantee of a
polynomial running time for a method which can take full advantage of the sparsenéssgrdphs
which are derived from typical applications like VLSI design or stati$tatgysics. In practice, this
method is fast and efficient and allows us to solve very large problem irestakiée have tested algo-
rithms based on different first derivative methods on a variety of diffegesgphs with up to 13,000
vertices. In every single run we have observed fast convergence tamhénrequired accuracy.

First derivative methods for unconstrained optimization (e.g. gradient-aiesceonjugate-gradi-
ent) [27, 30, 33] try to minimize a differentiable objective functibnIR™ — IR by taking a sequence
of steps based only on the value of the function and its gradient. This process teswieen the

value of the objective function is sufficiently small. The simplest exanplkhé gradient-descent
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method:

Algorithm: gradient descept f)

choose initial feasible solution

WHILE f(z) too large

ri=x+a/f(x)

where</f(x) is the gradient off at pointx, anda < 0 is an appropriately chosen constant. The
conjugate-gradient method [33, 26] is another example. For simplicity, we vatirdee the algo-
rithm in terms of gradient descent. However, as we will parallelizeetraduation of the objective
function and the gradient, our parallelization and analysis do not depend on anylpantethod
for unconstrained optimization. Using the strong duality property of our problem, weesarnhe
stopping condition by computing the duality gap betwégén) and the corresponding value for the

dual problem.

3.1 The objective function and the gradient

Problem (1), which is a constrained optimization problem, must be reformwudatad unconstrained
optimization problem if the methods just stated are to be applied. Maximizing equivalent to
minimizing Z, = ¥, wq;(vi, v;) sinceZ, = (X w;; — Z,)/2. Given a vector, let ||z|| = /(x, z)

be its length. We choose the function

9(1)1, RS v”) - Z Wi H<UUZH7H12>H (3)

i<y
as our objective function. Clearly,is identical withZ, on the unit sphere. Furthermokgijs inde-
pendent of the norms of the. This allows us to drop the side condition< 5,,. We prove in the
appendix that has no local minima. The potential problem of saddle points (which do exist) can be
alleviated by small perturbations.

Computing gradients is straightforward and we give only the final resultvi eenote the:-th

component of the-th vector. Then, assumirjg;|| =1 (Vi € V):

9y
ovk

K3

= vf{v;, C) — Ci, (4)
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where(' is the matrix formed by the column vectors
Ci= > wyvj, (5)
j€adj(i)
whereadj(z) = {j € [n] : w;; # 0}, [n] = {1,...,n}, andC;; denotes thé-th component of’;.

The value ofy can be computed as follows:

Algorithm: ¢ operations

1. Compute”’ as in (5). 2en
2.1, = <vi, CZ> forall: [n] 2n?

3.9=>,T, n—1

The second column (operations) counts the number of floating-point operations. The computation of

the gradientyy is quite similar:

Algorithm: g operations

1. Computel’; as before| 2en 4 2n?

2. df == vZkTZ — Czk 2n2

Apart from requiring evaluations af andyg, the usual unconstrained optimization methods update
the current solutio” by multiplying a correcting termd’ by a constantr and adding the result tg.
Namely, letV := V + oC. This update operation requirgs? floating-point operations ag andC'
aren x n matrices.

Finally, afterV = (v;) has been updated, eachmust be normalizedu{ := v;/||v;||) at a total
cost of3n? floating-point operations. This normalization is unrelated to the optimizatigorighm
and is merely a result of our attempt to save operations in the computation ofatiergr The
normalization relieves us from having to compute norms there. The total number attiopsrper

step isO(en 4+ n?), and the space requirementign?).

3.2 The Parallelization and its Analysis

As already mentioned, we parallelize the basic operations used by the uncomkstiimeization
algorithms. In particular, we will present and analyze parallel algoritfimevaluating the objective

function and gradient.
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The rest of this section will focus on sparse graphs, graphs avith o(rn?) edges. This case
presents obstacles since no efficient general off-the-shelf solutions foe gpanshs are available
(which are better than for arbitrary graphs). No single type of operation dormsitfaeunning time —
as did the matrix inversion operation in the previous section. Instead, a numtiéfecéntO (»?) op-
erations must be efficiently parallelized. The practically relevantiegipbns for MAX CuT (graphs
derived from VLSI applications [40, 6] and the Ising model) are typically enely sparse (for ex-
ample,|E| ~ 2|V| for most of the VLSI graphs in Tab. 5).

The first question to be addressed when parallelizing the computation of thergradia dis-
tributed memory parallel machine is the data layout, that is the distribofidhe data among the
local memories of the processors. Since for sparse graphs the memory requiraneeddminated
by the matriced” = (v;),e(, andC (size®(n?)), we focus on these two matrices. The other variables
used by the algorithm have sizi e + n) which is small compared to the space requiredifandC'.

We choose to partition the matrices along the rows. In terms of the algorithsnmeans that
each processaris assigned a set, of components of the-dimensional vectors;. Each processor
q stores locally the componenss of all vectorsy; and, similarly, allC;; for & € S,. Thus, only the
reduction operation§, .) (inner product) and.|| (Euclidean norm) require communication.

Figure 2 shows the parallelized components of the gradient-descent algorithnmolpased par-
titioning. The parallel running time, with p processors can be divided into the timig spent on
performing computations and the communication timesuch that, = £, + C,. Table 2 compares
the number of serial operations from Sect. 1.1 with the number of parallel operétoond=ig. 2.

Clearly, in all case$’, < F,/p. Therefore,

E
tp:Ep+cp§?1+cp (6)

3.3 The Communication Cost

All communication operations of our algorithm are of the same type: In the language pfdar

al. [23], they are sequences of‘broadcast-with-combining” operations — one for eaglf: € [n]).
Recall that broadcast-with-combining is a communication operation in which p@cessor con-
tributes an initial value:;. At the end of the operation each processor receives the result of combining

(or reducing) allz; by a simple operation (e.g. addition). We require this operation to be asseciativ
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Assign to each processgm sets, of components

such thats,,| > [S,,| — 1 for all processorg;, g;.

operations per processor

Algorithm: parallelg

1. Forall ¢ in parallel:
Vien], k€S Ci =3 cadi) wijvf 2en/p
Vi € [n]: Ti(q) = > kes, en 2n?/p —n

2. Computel’ = 3°, T'@ using global communicatior). GLOBAL COMM.

3. Returny, T; n—1

Algorithm: parallel<yg:

1. Execute steps 1 and 2 pérallel ¢ Q(B”ffﬁ) — n + GL. COMM.
2. Forall ¢ inparallel:

Vi € [n],kESq: dk:vaZ—Czk 2n2/p

k3

Algorithm: parallel normalize:

1. Forall ¢ in parallel:

Vi € [n]: Ti(q) = Y kes, vEvk 2n?/p —n
2. Computel’ = y_, T@ using global comm. GLOBAL COMM.
3. Vienl,ke S, of =of/JT; n?/p+n

Algorithm: parallel update:

4. Forall ¢ in parallel:

. =

Vi € [n], k€S, vf =vf 4+ adt 2n? /p

Figure 2: The parallel versions of the operations. Every processtares two vectord and7'(?. 7;

andTZ»(q) denote the-th.components of these vectors.
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Karp et al. [23] present an algorithm for a single broadcast-with-combining openahich is
optimal in the LogP model. The LogP model [11] uses only four parameters to describévioelne
an upper bound (latency on the time needed by a small message to travel across the network from
its source to its destination; the timevierheadl o a processor is engaged in sending or receiving a
message; the minimum time interval between consecutive message ssiosisior receptiongap
¢, and the number of processagisThe inverse of is the per-processor bandwidth for short messages.
On many machines, the per processor bandwidth for long messages is sevembbmagnitude
higher thanl /¢. The LogGP model [1] extends the LogP model by introducinthegap per bytdor
long messages as an additional parameter. The LogP model reduces to the postaiflBad&loy
and Kipnis [5] (also see Karp [23]) if = 0 and the time is rescaled such that 1.

Bar-Noy and Kipnis [5] describe several algorithms for sequences ef IN broadcast (without
combining) operations in the postal model. One algorithm (PACK) reduces this probthendionple
broadcast problem (by considering all data items as a single large data item), and uses algorithm
BCAST of [5] for the single broadcast. The running time of this algorithm is at mdésB@r-Noy
and Kipnis [5, Cor. 8]):

2(m+ A —1)logp
log(2 4+ (A —=1)/m)

where), the latency parameter, is the ratio of the time it takes for a messageadh its destination

+2m 4+ A+ 1) <2(m+ A)(1 +logp) (7)

and the time needed by the originator of the message to send it. In the followingjliveork
with the simpler term on the right-hand side of (7). Aswill be large, the right-hand side is a close
approximation of the left-hand side. We have selected algorithm PACK beda@adbers data in long
messages. Bar-Noy and Kipnis [5] describe alternative algorithms whiah @aly short messages
and which are faster in the postal model (which does not distinguish between bamlfaidshort
and long messages). However, the LogGP model (and in practice) algorithK iBA(@arly superior
for realistic parameter choices.

The algorithm is easily generalized to broadcast-with-combining by first aumdbthe values
by executing the broadcast algorithm “in reverse' [23]. The running time tetthie value of (7).
Thus, combining (7) and (6), noting that in each gradient-descent step, therecaoaltsvto the
communication algorithm (in “gradient' and in "normalize'), and that the dtzeats are eight byte

floating point numbers, one abtains:
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Fact 1 In the LogGP model witlo = 0, andp < n, the running time of each step of the gradient-

descent algorithm is at most

t, = % + 8(8Gm + L)(1 + [logp]) - (8)

The postal model and the LogP model ignore the network structure. A few words about this as-
sumption with respect to our application are in order. The requirements ofgbetain just described
are clear: The network must be able to simulate the deglaeadcast tree, where in our application
d > 1 should be a small constant. Most common network architectures (e.g. bingrintpsgcube,
mesh, cube connected cycles, butterfly) are easily verified to have dégpagming trees and, thus,
satisfy the requirement.

The situation is quite different if the processors (workstations) are connbgtadlat bus (ether-
net). While a single message trivially solves the broadcast problem, the cdrabipeoblem requires
p — 1 sequential messages as the root processor needs information from each of the-othgro-
cessors and only one message can be transmitted at any given time. Thas #menpper and lower
bound ofC, = pgm for the time needed for a sequencenobroadcast-with-combine operations on

p processors whergis the time a single message blocks the network.

Fact 2 For a flat bus (ethernet) network, the running time of each step of the gradient-desgent al
rithm is at most

I
t, = ?1 + 2pgm (9)

Figure 3 displays the resulting predicted speedups for reasonable parametes ¢tamepare Sect. 3.4
in this work and Sect. 5.2 in [11]).

To illustrate the difference between the two cases, we derive expnadsir the number of proces-
sorsp that can be used before the efficientyp) = ¢,/(pt,) falls below a given constamnt € (0, 1),

that is we considep, (n) = max{p € IN: X(p) > 1 —a}. By (6) X(p) > which is required

By
E1+p0p !
to be at least — «. Thus, substituting the expressions for and €, derived above and assuming
e = O(n) we obtain:

Fact 3 For our algorithm,p, = ©(n) in the LogP model. For a flat bus/etherngt, = O(\/n).

These results show that the algorithm scales linearly:)ifor the more sophisticated network types

like binary trees and hypercubes. For the flat bus, howgwaay only grow proportional tq/n.
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Table 1: Running times (in minutes) of the serial (on an SGI Indy) and the pamagiE@mentation (on
a 32-node CMD5) of the interior-point method on random graphs wikrtices and edge probability

0.5.

n 200| 400 | 600 | 800 | 1000

serial 3.3| 35| 154|450 982

parallel || 1.5 5| 12| 21 40

Table 2: The cost of the serial and of the parallel versions. The term “bcewitib' stands for

broadcast-with-combining and is defined in Sect. 3.3.

objective fct gradient normalize update
E, (serial) || 2(en +n?)+n—1 2(en + 2n?) 3n? 2n?
E, (par.) 2(en+n?)/p—1 |2(en+2n?)/p—n 3n%/p 22 /p
C, (comm.)|| n bc-with-comb. n bc-with-comb. | n bc-with-comb.| 0

speedup

50000

Figure 3: The speedups predicted by our performance model for larger graphs and machfties. L
LogGP with parameter& = 2.8 - 1078 sec/byte= 2.26 - 10~ sec/double,l, = 4.4 - 10~° sec,
d =2, Fy = (2ne + Tn*) - 1077 sec. Right: ethernet with parameters= 1/50, 000 sec/double and
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3.4 Implementation

We have implemented and run the algorithm on a variety of parallel machmesyticular a Con-
nection Machine CM5, an IBM SP2, and a cluster of workstations. The CM5 isidedan Sect. 2.
The cluster of workstations consisted of 16 Sparc 2 stations (40MHz clockmat@)ng Solaris, and
linked by an ethernet (which was free from outside traffic). The IBM SP2/(BS/6000 SP) had
34 nodes. The nodes were RS/6000 based POWER?2 thin nodes, running at 66.7 MHz. Each node
was equipped with a data cache of 32 kBtyes, an instruction cache of 64 kBytes, andBY&s Mdf
random access memory. The nodes were running A.l.X. 4.1.4 and the IBM AlX &dtallironment
(PE) Version 2. An implementation of the Message Passing Interface dtiais part of the PE. The
nodes were linked by IBMs SP Switch.

The program was written in C and directly based on the parallel algorithmgofZ=i We used
the message passing interface (MPI) [14] for the global communication operaliaddition, we
optimized our implementation for the CM5, hand coding the instructions for the vectts amdl
using the CMMD library [38] (version 3.3) instead of MPI. This allowed usréat each of the four
vector units in each CM5 node as a separate processor. Finally, we usedsdtiats to implement
the communication operations on the cluster of workstations.

Table 3 displays measured running times for the CM5 and the SP2. The inputs aresvisitinal
Ising grid graphs. We have measured the running times for only one class of graphsebéeaus
parallel performance (i.e. the ratio betweeandz, (p > 1)) depends only on the numbers of vertices
and edges, but not on the particular structure of the graph. The structure of the grapiciesioaly
the number of gradient-descent steps — which is the same for both the parallel seddheersion.

A technical problem arises when trying to compute the speedup.The larger graphs domotiie
memory of a single processor. Thus, we cannot measudieectly. We estimate this time by running
the program on a small number of processors, measuring the execution time foraheligad parts
of the program (i.e. ignoring communication and non-parallel code) and multiplyingrieday the
number of processors used. The result is a lower bound evhich yields a lower bound on the
speedup.

Figure 4.compares;thejneasured speedups on the different machines with thogegisdibe

LogP model. As predicted by the analysis in the previous section, the speedups for taadP2
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Table 3: Performance data for the CM5 and SP2 implementatidfisand | £'| are the number of

vertices and edges in the input graph. The running titpesith p processors (vector units for the

CMb5) are measured in seconds per gradient-descent step.

speedup

CM5 SP2
\4 | £ t1 | ti2s | Speedup| t; | t32 | Speedup
1600| 3200| 27.8| 0.26| 107 2.310.09 26
2500 5000| 68| 0.60| 113 6.8 | 0.25 28
4900| 9800| 260|2.21| 118 30.5|1.01 30
6400| 12800 445|3.67| 121 5211.72 30
10000| 20000 out of memory 127 4.11 31
12100| 24200 out of memory 186 | 5.98 31
x x x
0 WS d ]
measure R
WS %predicted)E e
25 CM5 ---- T
SP2 %measured) rrrrrr T
SP2 (predicted)- - T
20 / //f:/"/ -
15 ///// //// - 1
10 -
////‘:(//
5 //// -
x x x x x x
5 10 15 20 25 30

Figure 4: Speedups of our parallelization of the minimization algorithm on diffenechines|V| =

2500, £2}-=5000
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CM5 are far better than for the workstations (WS) linked by an ethernet. Thiicped speedup
for the workstations (WS predicted) is based on (9), except that we used a comnamnteam

of 4pgm (instead of2pgm) to account for the suboptimal broadcast routine in our implementation.
We measureds; = 110 seconds and estimate= 1/50,000 seconds per double precision float.
(We estimate that about one third of thé& Megabits per second capacity of a standard ethernet is
available at the level of UNIX socket read/write operations, which cpaoeds to approximately
50,000 double precision floats per second.) Despite this rather crude estimate, theshigws a
good match between the measured curve and the prediction.

We have estimated the LogGP parameters for MPI on the SP2 by timing thanmet®mmunica-
tion operations. Figure 3 displays our parameter estimates and the predicteldgpdased on (8).
The curve "SP2 predicted' in Fig. 4 was obtained using the parameters of Fige lifference be-
tween this prediction and the measured speedups is less than three perceotifididence provides
some evidence for the validity of our model. Figure 5 shows how the speedups imprévegaaph
size increases. In this figure, the tepmocessorefers to a CM5 vector unit.

Table 4 compares the numbers of iterations and total running times on sparse gréehateitor-
point method of Sect. 2 and the algorithm described in this section. Both programsuwmeon a
32-node CM5 until the duality gap was smaller thah%. The inputs were sparse random graphs
with edge probability 0/». The gradient-descent program is several orders of magnitude faster. This
is mostly due to the shorter time per iteration. However, it is intemgstio observe that in spite of
its simpler (faster) computations, the first derivative method usestksgions than the algorithm
of Sect. 2. In light of the remarks at the end of Sect. 2, we observe furtherrhatehts favorable
comparison is not due to potential inefficiencies of our interior-point algorithm apteimentation.

The step sizer (cf. page 12) was determined by an adaptive scheme which decreagenever
a step would lead to a deterioration and otherwise incread®sa factorl + ¢ with ¢ = 0.02. In
practice, this scheme kept the algorithm from spending much time near saddle pastsg the
stopping condition by computing the gap between the current value of the objective fusiatidhe
corresponding value for the dual problem involves computation of the largest eigerofeh dense
matrix. As this operation is fairly expensive, we did not test the duality gajmgtine running time of

the algorithm. Instead, we fixed the number of steps to between 200 and 700 (dependingraphhe
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120 -

100 —

80 -

60 -

speedup

| |

80 100

Figure 5: Speedups on the CM5:= |V/| is the number of vertices in the input graptis the number

of processors (vector units).

Table 4: Total running times and iteration counts on sparse random graphs (cf4)Satt 32-node

CMb5 of the interior-point algorithm of Sect. 2 and the first derivative methodrde=d in this section.

interior-point gradient-descent

|V| || iterations time || iterations time
200 111 2 min. 40 < 1 sec.
400 161 6 min. 45 1 sec.
600 201 15 min. 50 5 sec.
800 231 22 min. 55 9 sec.
1000 251 54 min. 60 15 sec.
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size) and stored the information necessary to compute the eigenvalue gag $ofution returned by
the algorithm. This allowed us to verify that the solution was within the meguaccuracy after the
algorithm had terminated. We always observed that the gap was far snhaltettte0. 1% target we
had set and that usually even a far smaller number of iterations would haweduffi

The vector units required special consideration. As far as the paraliehzist concerned, we
have treated the vector units as normal processors. In particular, the congpoh#rv; are split
evenly among thep vector units and each vector unit works on its components as described in
Fig. 2. All steps of the algorithm except the first step in computing the objeativetibn involve
operations on long regular vectors. They can be directly adapted to the vectr 8tep 1 in the
computation of the objective function and the gradient (Fig. 2), the only step whicimdepa the
input graph, is different. When the input graph is sparse, we assume that it isigizdjacency list
representation. The input graphs can be arbitrary and so can the lengths of the@d|este of the
individual vertices. In particular, many of the adjacency lists can béhed ¢e.g. length = 2) that
much of the benefit of the vector units is lost. One way to solve this problem is poquess the
input graph and transform it into edge representation where the graph is given bgttbidll its
edges. Now, the vector units can operate on one long vector, the vector of all étiyyesver, this
approach leads to read-after-write pipeline hazards if the distance irdgeelist between any two
edges which are incident on the same vertex is smaller than the vector |8igghproblem can be
solved for most edges by preprocessing the edge list. Depending on the input graph, hieee ca
edges for which such a “schedule' does not exist. However, these edges belonigaticeajseency
lists whose size is bounded by the vector length which is a small constant. Tdaserey lists are
processed individually.

The last step in the GW algorithm is to convert the vector configuration inectaural cut. This is
achieved by generating a random veotan the sphere(rn) operations) and computing, v;) for

all : (6(n?) operations). Given the data layout used above, these steps are easislipacall
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4  Solution Quality

In this last section, we examine how well the GW algorithm approximates thenmaxicut size for
a variety of graphs with several thousand vertices. Whi&8 is theworst caseperformance guaran-
tee, we are now interested in the approximation quality one can expect incpratten running the
algorithm on typical input graphs. Furthermore, we provide an experimental ewalutthe algo-
rithm on graphs with negative edge weights — a case which is not covered bytheperformance
guarantee of the algorithm. By way of comparison, we have also implementedsachannealing
and the randomized greedy algorithm.

Previous experimental work with the GW algorithm [16, 7, 31, 12] has been limiteduich
smaller inputs. Our parallel implementation makes it possible to compateetigs reported previ-

ously with results obtained on much larger graphs.

4.1 The Graphs and the Algorithms

We have tested the algorithm on the following graphs:

1. Graphs derived from circuit design problems: It has been observed [9, 8, 29, 6] that one
of the phases (the layer assignment problem) in the design process for VLSI chipsrdad pr
circuit boards can be reduced to theskICuT problem. We have run the GW algorithm on ten

graphs derived from VLSI problems [40].

2. Graphs derived from the Ising model: The Ising model is used in statistical physics to de-
scribe magnetism. A reduction from the problem of finding the ground states (staésiofal

energy) in an Ising spin glass system ta¥MCuT is well known. We model each elementary

magnet as §0,1}-variable and consider only nearest neighbor interactions and interactions

with an external magnetic field. The reduction transforms such a system grph which
has one vertex for each elementary magnet. There is one further vertex fxtdraal mag-

netic field. By means of the reduction, the cut size found by the algorithm transtébesn

upper bound on the energy of the ground states and the size of the positive semidefinda soluti

translates into a lower bound.
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3. Sparse random graphs:We have tested the algorithm on sparse random graphs in which the
edge probability is set to = 10/n, wheren = |V/|. This corresponds to random graph class C

in Goemans and Williamson [16].

The first two graph classes are derived from real world applications of the@®0T problem. The
third class is a popular test instance.

We have implemented simulated annealing and the randomized greedy algorithbasais for
comparisons. The randomized greedy algorithm of Sahni [37] has been mentioned. ith. Beth
addition to what is described there, we do greedy improvements of the randonT katapplication
to MAX CuUT is straightforward. The set of states is the set of cuts. The objective dmnstithe cut
size. The possible transitions are those which change the cut by at most one eer{@®] for a

comprehensive study of simulated annealing and its application to theQdT problem).

4.2 Experimental Results

In this section, we report on the results of running the algorithms on the graphs ddserithe
previous section. The results for the GW algorithm as well as all running timesepa@t were
obtained by running our gradient-descent implementation on a 32-node Connection Machine CM5.
All running times are reported in minutes. Simulated annealing and the ranedgrieedy algorithm

were run on SGI Indy workstations. We took care to give approximately the samputational
resources to the three algorithms — making adjustments in the running times thifénent number

of processors and processor speeds. Our basis was the running time on the CM5 of Gl waghi
dominated by the time needed to find an optimal vector configuration. This time ultiplrad by the
number of processors and by a factor accounting for the relative speed of the CMSp8&paessors
compared to the SGI Indy workstation.

Space limitations have led us to include only three data tables here. The conslus draw
from them are consistent with many other experiments we have run and could naotariere. Ta-
ble 5 shows the results for the VLSI graphs. The table displays the cut sizes foumuhligted
annealing ¢utsy, ), the randomized greedy algorithmufrg), and the GW algorithm. The results for
simulated annealing are the best cuts found over five rung’cinnealing steps each. The results for

randomized greedy are the maximum cuts found @0ed00 independent runs. The coluniftutcw
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contains the expected size of a single random cut as described in Goemans aachafiili [16].
Two observations are apparent: On one hand, the random experiment of Goemans amas@rillia
produces cuts larger than the randomized greedy algorithm is likely to find etezradérge number
of iterations (cf. Sect. 1.1 for the relationship between the two algorixh@a the other hand, the
cuts found by simulated annealing are somewhat larger than those found by the G\Walg®hese
two observations hold for a wide range of different graph classes (we did not fimdjle siounter
example), and are also supported by observations made previously about simulatthgrarel
the randomized greedy algorithm. Johnson et al. [19] observe for the rel&edHEPARTITION-
ING problem, that the randomized greedy algorithm performs far worse than simalatezhling.
Berry and Goldberg [7] perform a similar experimental comparison of sehealistics — including
simulated annealing.

While it seems clear that the simplest version of the GW algorithm cannot ¢emwwglk simulated
annealing, it is also clear that there are simple modifications to it whiktlmprove its performance
in practice. Probably the simplest such scheme is to find an optimal vextiigaration and then gen-
erate many independent cuts by generating independently many hyperplanes [16]. hisakgue
to the iterated randomized greedy algorithm. While the iterated randorgissdly algorithm sam-
ples cuts from the uniform distribution, the iterated GW algorithm samplesi@rtsthe distribution
induced by the semidefinite program which gives larger weight to larger cuts.

Just as taking independent samples under the uniform distribution (iterated rardaynezdy)
is not the best way to generate large cuts, one might suspect that there are fiecireee$chemes
than generating cuts by independent random hyperplanes. One possibility is to add thensbohe
Metropolis filter that is used in standard simulated annealing to the procetiiole generates random
hyperplanes. The result is a simulated annealing version of the basic randonmexgesf Goemans
and Williamson. The moves (neighborhood) of such an annealing algorithm could be defaneallas
random perturbations of a current hyperplane. Objective functions and cooling schedutébeoul
the same as in normal simulated annealing.

Column cutgwsa In Tab. 5 shows the results for the simulated annealing version of the GW
algorithm. Now the algorithm does not only clearly win against simulated amgealit even finds

the (known) optimal cuts for each graph. The time needed to solve the positiveéesenité program
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Table 5: Results for graphd/, £') derived from circuit layout problems. UB is the upper bound of
the GW algorithm, andutgrg, cutsa, cutgw, andcutgwsa are the cut sizes found by randomized
greedy, simulated annealing, GW, and an extension to GW, respectivelcolimant.,, displays
the time spent to find a near optimal vector configurationiands the time spent by GWSA deriving

cuts from it. See text for detalils.
graph |V| |E| uUuB ECUtGW CutRG CutSA CutGWSA tconv tcut

via.cln| 828 | 1446| 6183 5969 | 4110, 6048 6150| 0.75| 0.17
via.c2n| 980 | 1776| 7118 6860| 4968| 7037 7098| 1.00| 0.25
via.c3n| 1327 | 2482| 6943 6590| 4186| 6844 6898 | 1.67| 0.42
via.c4n| 1366 | 2608| 10111 9860| 6156| 9900 10098| 1.80| 0.33
via.c5n| 1202 | 2235| 8002 7657| 4902| 7920 7956 | 1.48| 3.00
via.cly| 829|1750| 7798 7535| 6102| 7746 7746| 0.27| 0.08
via.c2y | 981 | 4206| 8279 7985| 6252| 8226 8226 0.35| 0.10
via.c3y | 1328 | 2845| 9585 9110| 6550 9502 9502 || 0.58| 0.12
via.c4y | 1367 | 2916| 12563| 12332| 8850| 12516 12516 0.62| 0.12
via.c5y | 1203 | 2558 | 10333 9980 | 6954 | 10248 10248\ 0.50| 0.12
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is displayed undet.,,,,. The time given to the GW simulated annealing scheme is displayed under
T eut-

In addition to finding cuts, the GW algorithm provides one piece of information which none of
the simple heuristics is able to find: an upper bound on the maximum cut size in the g@pmnC
UB displays the upper bounds which were derived from the dual solutions. Our correspondiaf prim
and dual approximations of the optimum are within5% of each other and therefore withind5%
of the true upper bound.

The advantage our simulated annealing version of the GW algorithm had over staimdalated
annealing on the ten VLSI graphs is not universal. Tables 6 and 7 show exampleplotigitaibu-
tions on which simulated annealing wins. Both distributions are quite sitailire distributions on
which Johnson et al. [19] have also observed simulated annealing to outperfokartiighan-Lin
heuristic: sparse random graphs.

Table 6 shows the results for the second graph class described in the previous &2 Ising
graphs). Each graph corresponds to a regular three dimensional20 x 20 grid whose nearest
neighbor interactions are drawn from the standard normal distribution. The paranvetich corre-
sponds to the strength of an external magnetic field is varied betivaedt. Even though the 0.878
performance guarantee does not apply to these graphs due to the presence of negativegatge we
most of the gaps we observe are within that bound. However, this is not the caseafbvalmes of
h.

The results shown in Tab. 7 are for sparse random graphs. The gap size iaavthdbe graph
size and comes close to the 0.878 guarantee. This observation is consisteheviitnd visible in
Goemans and Williamson [16].

Tables 6 and 7 show that simulated annealing outperforms the simulated agneasion of the
GW algorithm on sparse random graphs. One reason is the generally observed goodgreréoni
simulated annealing on sparse random graphs. However, the results ardlaksaoced by some low-
level implementation issues. Simulated annealing, due to its simptiaityeasily be implemented
such that it takes advantage of the sparseness of a graph. In particular, eaalngrstep can be
executed in time proportional to the degree of the vertex being moved acrossttii¢owever, each

step of our GWSA implementation takes tif9¢én ) as the inner product of twe-dimensional vectors
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Table 6: Results of running the algorithm on graphs derived from three dimeng&onal0 x 20

Ising systems as described in the téxt| = 8001, ¢.ony &~ 50min., {., ~ 15min.
uB cut

h

gwW

CutSA

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

7488

9360
11485
13872
16215
18764
21412
24151
26967
29850
32792

6252.4

8053.0

9996.2
12304.9
14804.1
17509.8
20309.0
23232.0
26157.6
29221.2
32300.7

6727.46

8537.75
10612.70
12898.70
15339.80
17920.70
20632.20
23462.00
26366.60
29343.80
32381.30

Table 7: Results of running the algorithm on sparse random graphs (edge prohakilitfy/ ).

V] |F| UB | cutgw | cutsa Leut
1000| 5048| 3934.4| 3603| 3686| 1.32
2000| 9964| 7819.8| 7114 7307| 2.83
3000| 14984 | 11790.2| 10625| 10994 | 4.92
4000| 19948| 15728.7| 14162| 14684| 6.83
5000| 24816 19586.5| 17578| 18225| 9.17
6000| 29880| 23601.5| 21196| 21937| 11.75
7000| 35120| 27728.6] 24904| 25763 | 14.80
8000| 39675 31427.4| 28210| 29068| 17.98
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must be computed. Thus, if both algorithms are given the same amount of time, sanatetealing

can performd(n) times more steps than GWSA. If, on the other hand, both algorithms are run for
the same number of steps, GWSA finds larger cuts than standard simulated rmpn8atilarly, if

the input graphs become dense, the advantage of simulated annealing evaporats. vi@vdraw

the following conclusions from our experiments:

e The simplest version of GW is a clear improvement over the randomizedlygedgorithm.

However, it cannot compete with standard heuristics like simulated angeal

¢ We only begin to address a more fundamental question about the average case pegormanc
of the GW algorithm: Can the basic random experiment which underlies the GW algorithm
improve performance on commonly studied graph distributions when used as averiofia
more complex heuristic? A definitive answer lies outside the scope of this paperesults

for the VLSI graphs show that there is some potential.

5 Conclusions

We have studied ways to parallelize the approximation algorithm fax @uT by Goemans and
Williamson. An interior-point method is quite efficient for dense input graphs. lleazang it
amounts to parallelizing matrix inversion. The first derivative meth@dhave studied is, in prac-
tice, significantly faster for sparse input graphs. We have presented a&detadlysis of the resulting
parallel algorithm in a distributed memory model. We prove linear speedtheihogP model. We
compare the behavior of our parallel implementations on different machines witieshks of our
analysis. We show that given an efficient communication algorithm and impkaten as well as
high performance parallel machines, the algorithm can be used to solve vgeypeoblems with
thousands of vertices.

Finally, we have used the implementations to compare the approximation quahty GW algo-
rithm with two other standard algorithms: simulated annealing and the randdmizedy algorithm.
We conclude that, overall, simulated annealing appears to find larger cats@wmparable amounts
of time. However, we have identified one class of graphs on which the GW algasithks signifi-

cantly better than simulated annealing.
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6 Appendix

In general, the main danger of using a gradient-descent method is that of convergisglioptimal
solution (that is, a local minimum). In this section, we prove that any Iogalmum that exists has
to be a global minimum, a point in which the objective function has its optimum valbe. nfain
idea of the proof is to map the space of vector configurations into a space of positiigefiaite
matrices and to show for each poivitin the vectors' world that it can only be a local minimizer

if its corresponding positive semidefinite matrix is also a local minimiZée step from vectors to
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positive semidefinite matrices is the first step in the polynomial time glgorto find a maximum of
(1) described in Goemans and Williamson [16]. Fare V, lety,; = (v;,v;), Y = (yi;):;ev and

Zy = %sz’j(l — ¥ij)- (10)

i<j

The symmetric matriX” is positive semidefinite. It is easy to see thatx 7, (subject tov; € S,)
is equal tomax 7, (subject to}Y” symmetric and positive semidefinite apd = 1 for: € V). Any
local minimizer in the positive semidefinite matrix world is in fact alghl minimizer and we can
show that the same is true in the vectors' world. The proof requires mappingses#éimgoroperties
between the vectors' world and positive semidefinite matrices. We begiorsyructing the required

mappings.

The Mapping
We begin with a basic fact about metric spaces.

Fact 4 (Royden [36, p.136])Let (X, d; ), (Y, d2) be metric spaces witii complete. Leff be a uni-
formly continuous function from a subsebf X into Y. Then there is a unique continuous extension
f of f from S to S (the closure of5); that is, there is a unique continuous functign S — Y such

that f(z) = f(z) for all = € S. Moreover,f is uniformly continuous.

Fact 5 Under the same conditions as in the previous factflendg : Y — X be functions such

that g is continuous ang(f(x)) = = forall z € 5. Theng(f(x)) = = forall z € S.

Proof: Forz € S there is nothing to prove. Givene S\ S, consider any sequence;) in S with

limit z. Then:
r =lima; = limg(f(;)) = g(lim f(z;)) = g(f(x)) O

Now, we will apply these facts to positive semidefinite matrices. £&%, be the set of positive
definiten x n matrices all of whose diagonal elements arand letP 5D, be the set of positive
semidefiniten x n matrices with ones on the diagonal. Furthermore}1ét’,, be the set ofi x n
matrices whose column vectors have lengtfi.e. lie on the unit sphere). LétP, = PSD, \ PD,,.

We can consider all these sets as metric subspac(é&rﬁfd) whered is the Euclidean metric.
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Facte VCT, is closed.PSD,, is bounded and closed? S D,, is the closure o’ D,,.

Letg : VCT, — PSD, be given byg(V) = VIV. Note thaty is continuous. The Cholesky de-
compositione (see Press, Flannery, Teukolsky, and Vetterling [33] for details) decas@opositive
definite matrixY” into a lower-triangular matrix” = ¢(Y') € VCT, such thatV’?V = Y = ¢(V),

The Cholesky decomposition is continuous because it is the composition of continuous furd8jons [

Fact 7 The functior : PD,, — VT, computed by the Cholesky decomposition has a continuous
extensionf : PSD,, — S, whereS = f(PSD,) C VCT, is the range off. Furthermore,f is a

homeomorphism. Its inverse is the restrictiory @b 5.

Proof: VCT, is closed (Fact 6) and theempletesince it is a closed subspace of the complete space
IR™ (Rosenlicht [35, p.52,53])PSD,, is a closed, bounded subspaceltif (Fact 6). Therefore,
it is compact ([35, p.58]) and, hence, sintes continuous, it isuniformly continuous ([35, p.58]).
Thus, by Fact 4, and sin@es D,, is the closure o’ D,, (Fact 6),c has a unique continuous extension
f:PSD, — VCT,.

By the definition of the Cholesky decompositign,f(Y)) = Y forall Y € PD, and by Fact 5

and sincey is continuous, this is true even for &ll€ PSD,,. O

The Correspondence between local Minima
Definition 1 Given a functionf : X — IR, a pointz € X is alocal minimizerof f if

Je > 0%y € Be(x) : fy) > f(x) (11)
whereB.(z) be the oper-ball aroundz.

Recall from the description of the algorithm the definitionf (the objective function in the unit
vector world) andZ, (the objective function in the positive semidefinite world).
We want to show that it is a local minimizer forZ, theng(V') is a local minimizer forz,. The

next Fact is the main step in the proof.

Fact 8 Let (X,d;) and (Y, d;) be metric spaces anbl : Y — S C X a homeomorphism (where
S = h(Y) is the range of?). LetZ, : X — RandZ, : Y — IR be functions such that, (z) =

Zy(h="'(x))forall z € S.If « € S is a local minimizer o7, thenix~'(z) is a local minimizer of7,,.
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Proof: Let = € S be alocal minimizer ofZ,.. That is, let there be > 0 such thatZ,(z) > Z,(x) for
all z € B.(z). Sinceh is continuous, there is & > 0 such that for alk in a é-ball around.™"(z),

h(z) is in thee-ball aroundr(h~'(z)) = =. Therefore, for all such:

One last step is needed before Fact 8 and Fact 7 can be combined to yieldrbe ehssilt. Note
that these two facts cover only the case in which the local minimizgy é€sin f(PSD,, ). We cover

all otherV € VCT, by mapping them intg (PS5 D,,) by means of an appropriate homeomorphism.

Fact9 For everyV ¢ VCT, there is aV ¢ f(PSD,) C VCT, and a homeomorphisrhy :
f(PSD,) — kv(f(PSD,)) such thatky (V) = V and Z,(W) = Z,(k'(W)) for all W €
k(f(PSDy)).

Proof: Given a description of the Cholesky decomposition [33], it is not hard to see that
f(PSDn) = {(aij) cVCT, a1 = 1,@2'2' >0 (Z > 2) andaij =0 forj > Z} (12)

We can interpret the columns &f € VT, as coordinates of unit vectors w.r.t. the standard or-
thonormal basis olR".

For each matrid” € VT, there exists an orthonormal bagis such that the coordinates of
V with respect toBy of the column vectors oi” have the form of (12). In other words, there
exists a basif3y andV € VCT, such thaty = BLV andV € f(PSD,). If the columns ofl/
are linearly independent;,, can be found by applying Gram-Schmidt orthonormalizatioltoAs
Gram-Schmidt orthonormalization defines a continuous function (because it is the ¢coonpok
continuous functions), the construction can be extended to &ll'6f,, using Fact 4.

We can takeky as the restriction tgf(P.SD,,) of the linear map defined by. Clearly, By
is invertible, &y and its inverse are continuous, ahkd(V) = BTV = V. Furthermore, as,
corresponds to a change of basis, the lengths and angles of the vectors are unchanged. That is

Z,(W) = Z,(k' (W) forall W € k(f(PSD,)). Thus,ky is an appropriate homeomorphism.O

Fact 10 Each local minimizet” of Z, is in fact a global minimizer. FurthermoreZ, (V') < Z,(Y)

forall Y € PSD,,.
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Proof: Any local minimizerV € VCT, is also a local minimizer irky (f(PSD,)), andky o f
is a homeomorphism with the properties required in Fact 8. Now, by Fact 8 Witk VCT,,
S =ky(f(PSD,)),Y =PSD,,andh = ky o f, we have thatky o f)~' (V') is a local minimizer of
Z,. ButasPSD, is convex andZ, is a convex functionjk o f)~*(V) is indeed a global minimizer
of Z, (Gruber and Wills [17, p.632]). Finally, evely € V' C'T,, can be mapped viato aY € PSD,

such thatZ,(Y') = Z,(V') and vice versa (vig). 0
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