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Abstract: We develop and experiment with a new parallel algorithm to approximate the maximum
weight cut in a weighted undirected graph. Our implementation starts with the recent (serial) algo-
rithm of Goemans and Williamson for this problem. We consider several different versions of this
algorithm, varying the interior-point part of the algorithm in order to optimize the parallel efficiency
of our method. Our work aims for an efficient, practical formulation of the algorithm with close-
to-optimal parallelization. We analyze our parallel algorithm in the LogP model and predict linear
speedup for a wide range of the parameters. We have implemented the algorithm usingthe message
passing interface (MPI) and run it on several parallel machines. In particular, we present performance
measurements on the IBM SP2, the Connection Machine CM5, and a cluster of workstations. We
observe that the measured speedups are predicted well by our analysis in the LogP model. Finally, we
test our implementation on several large graphs (up to 13,000 vertices), particularly on large instances
of the Ising model.
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List of Symbols� epsilon� xi� lambda� alpha� ThetaIN N (the natural numbers)IR R (the real numbers)
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1 Introduction

Given a weighted undirected graphG = (V;E), a setS � V of vertices defines the cut(S; V nS). The

size of the cut is the sum of the weightswij of all edges which connect a vertex inS with a vertex inV nS, i.e. cut(S) =Pi2S;j2V nS wij . The MAX CUT problem is the problem of finding a cut of maximum

size in the input graphG. MAX CUT has applications in VLSI design [9, 8, 29, 6] and statistical

physics [6]. MAX CUT is known to be NP-complete [24]. However, it can be approximated to within

a constant factor by polynomial time algorithms. Indeed, the greedy algorithm of Sahni andGonzalez

[37] finds a cut whose size is guaranteed to lie within a factor of0:5 of the size of the maximum

cut. For more than 20 years this factor of0:5 was the best polynomial timeperformance guarantee

known for MAX CUT. A recent algorithm by Goemans and Williamson (GW) [16] is guaranteed to

come to within a factor of 0.878 of the optimum. This breakthrough in the design of approximation

algorithms has lead to improved approximation algorithms for other NP-completeproblems [21, 15, 3,

13, 10]. The basis for the significant improvement are the more sophisticated techniques of positive

semidefinite programming and randomized rounding. However, solving semidefinite programs is

computationally expensive. Previous implementations of the algorithm on serial machines could only

handle relatively small inputs (200 to 500 vertices). See Poljak and Rendl [31]for related work.

Our goals are twofold. Firstly, we want to establish the practical possibility of using the GW algo-

rithm for much larger input graphs of thousands of vertices within realistic amountsof time. In order

to achieve this goal, we make use of parallel computation techniques and consider different versions

of the GW algorithm where the semidefinite program is solved using gradient-descentand interior-

point methods. We analyze our algorithm using the LogP model. This model, first proposed by Culler

et al. [11], provides a realistic platform with which to evaluate the efficiency of algorithms on parallel

distributed memory machines. The LogP model seems to be the most accurate and explanatory model

for analyzing the algorithms which we consider here. It considers point-to-point communication of

processors over a network, taking into account system parameters which include message overhead,

communication latency and network bandwidth, as well as the number of processors. Wedefine this

model more precisely in Sect. 3. More details of and motivation for this model can be found in [11].

Secondly, we want to determine if the theoretically superior approximation quality of the GW

algorithm is matched by an improved performance on typical test inputs. For thispurpose, we have
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also implemented the greedy algorithm and simulated annealing. We observe thatthe GW algorithm's

solution quality is significantly better than that of the greedy algorithm, while it does not match the

solution quality of simulated annealing. We consider modifications to the GW algorithm which im-

prove its solution quality. We are especially interested in inputs which are derived from practical

applications. In particular, we investigate whether the GW algorithm can compete with the Monte

Carlo methods which are predominant in applications of MAX CUT in statistical physics. Indepen-

dently of the actual cuts, the GW algorithm also produces an upper bound on the size of the optimal

solution. This information is not provided by any of the simpler heuristics but can bequite useful

when evaluating their performances.

1.1 Previous Work

A randomized version of the greedy algorithm of Sahni and Gonzalez [37] can be stated as follows:

“Given a graph, generate cuts according to the uniform distribution”. By linearity of expectation, the

expected cut size under this distribution is half the sum of all edge weights and, thus,at least half the

size of the optimum cut.

Goemans and Williamson [16] improve this ratio from 1/2 to 0.878 by generating cuts from a

more sophisticated distribution: Each vertex is represented by ann-dimensional unit vectorvi. The

first step of their algorithm is to find a vector configuration (that is, a set ofn vectors inIRn) which

solves maxZv = 12Xi<j wij(1 � hvi; vji) subject tokvik2 = 1 8i 2 V (1)

whereh:; :i is the inner product. In general, we denote constrained optimization problems in the formmaxF = f(x) subject to cond(x)

meaning that the goal is to find a solutionx which maximizes (minimizes)F = f(x) and satisfies

the condition cond(x). A near-optimal solution for (1) can be found in polynomial time using a

semidefinite programming algorithm and incomplete Cholesky decomposition.

The second step of the GW algorithm is to uniformly generate random hyperplanes through the

origin. A hyperplane – given by its normal vectorr – separates the vectors into the setsL = fvi :hvi; ri � 0g andR = fvi : hvi; ri < 0g. This defines a cut. The analysis of Goemans and Williamson
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shows that the expected cut size under this distribution is at least0:878 times the size of the optimum

cut. Intuitively, an edgefi; jg has the tendency to increase the angle betweenvi andvj in the optimal

configuration. This increases the probability that the edge is cut, as the probability that two vectors are

on different sides of a random hyperplane is proportional to the angle between them. The algorithm

can be derandomized by means of the method of conditional expectations [16].

1.2 Outline

The computationally expensive part of the GW algorithm is finding a near-optimal solution of (1). In

Sect. 2 we describe an interior-point algorithm for solving (1). Sect. 2 containssome technical details

about interior-point algorithms and might be skipped by expert readers familiar withthe primal-dual

procedure presented in Nesterov and Nemirovskii [28]. Our implementation is a relatively straightfor-

ward parallelization of their method. Sect. 3 is the central section of this work. An alternative parallel

algorithm, which, in practice, is more efficient for sparse graphs, is described in this section. It in-

cludes a detailed analysis of the parallel algorithm in the LogP model which showsthat linear speedup

can be achieved on most modern massively parallel machines. Furthermore,it describes an MPI based

parallel implementation, displays performance measurements on several parallel machines, and com-

pares these measurements with our theoretical predictions. Finally, Sect. 4 describes an experimental

comparison of the approximation quality of the GW algorithm and of simulated annealingfor several

classes of graphs.

2 An Interior-Point Algorithm

We useY � 0 to signify that the matrixY is symmetric and positive semidefinite. Letyij be theij-entry of a matrixY . Goemans and Williamson [16] show that program (1) is equivalent to the

following semidefinite program.maxZy = 12Xi<j wij(1� yij) subject toY � 0 andyii = 1 (i; j 2 V ): (2)

A feasible solution of (2) can be transformed into a feasible solution of (1) with the same value via an

incomplete Cholesky decomposition.
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Semidefinite programming is a special case of convex programming which can be solved in poly-

nomial time with�-error. One allows small errors as exact optimal solutions might be non-rational.

In the following we will simply speak of solving semidefinite programs (without mentioning the

small error). Nesterov and Nemirovskii [28] present a number of interior-pointalgorithms for convex

programming and prove polynomial-time bounds for them. The first interior-point algorithms were

designed for linear programming by Karmarkar [22]. The nameinterior point refers to the fact that,

unlike the simplex algorithm, these algorithms approach the optimum from the interiorof the poly-

hedron of feasible solutions. Alizadeh [2] generalizes Ye's algorithm for linear programming [41] to

semidefinite programming.

The algorithm described in this section is based on an interior point algorithm of Nesterov and Ne-

mirovskii [28] which belongs to the class ofprimal-dual potential reduction algorithms[41]. Primal-

dual algorithms solve the original (primal) problem and a second problem which is dual to it. Given

a semidefinite programP , one can define a second semidefinite programD by means of a simple

transformation and call it thedualprogram ofP . In order to make such a definition useful, some facts

similar to those known about duality in linear programming likestrong dualityor complementary

slacknessshould be shown. In linear programming, a primal-dual pair of programs consists of a max-

imization and a minimization problem. Intuitively, strong duality statesthat the value of the objective

function of the maximization problem is not larger than the value of the objective function of the

minimization problem at any pair of feasible solutions of the respective problems. Furthermore, the

primal and dual solutions are optimal if and only if the values of the two objective functions are equal.

Complementary slackness states that the inner producthx; si of any feasible solutionx of the primal

problemP and any feasible solutions of the dual problemD becomes zero if and only ifx is optimal

for P ands is optimal forD. These notions have been generalized to semidefinite programming by

several authors [28, 2].

At each moment, the primal-dual algorithm maintains a strictly feasible solution x of P and a

strictly feasible solutions of D. A stepof the algorithm updates either the primal solution (primal

step) or the dual solution (dual step) in a way which tends to reducehx; si. When the inner product

becomes sufficiently small, the primal and the dual solution are close to optimal.

In order to guarantee polynomial running time, the algorithm tries to minimize a potential function
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rather than the inner product itself. The potential function is chosen such that minimizing it implies

driving complementary slackness to zero. In addition, it should be such that for anystrictly feasible

pair of solutions, either a primal step or a dual step will reduce its value by a constant amount. If the

difference between the initial value of the potential function and a value whichmakes complementary

slackness sufficiently small, is polynomially bounded, the algorithm will only need apolynomial

number of steps.

After this outline of the general principle, we present now the details of the algorithm. The first

step is to formulate a dual problem. Consider the space of symmetricn � n matrices (which we can

identify with IR�n2�), and choosehx; yi = Trfxyg as the inner product on this space [28, Sect. 6.4.1],

whereTrfxg is the trace of the matrixx. We consider the following pair of primal(P ) and dual(D)
problems [28, Def. 4.2.1]:(P ) : minimizehIn; xi subject to w + x � 0 ; xij = 0 for all i 6= j(D) : minimize hs;wi subject to s � 0 ; sii = 1 for all 1 � i � n ;
wherew = (wij)ij is the matrix of the edge weights ofG, andIn is then� n identity matrix. Strong

duality and complementary slackness for(P ) and(D) follow from [28, Thm. 4.2.1]. Furthermore,

it is easily seen that strictly feasible solutions for both(P ) and(D) exist. Observe that minimizinghs;wi = Pwijsij is the same as maximizing
Pwij(1 � sij). Our algorithm will solve(D) and this

will provide us with a solution of (2). Interpretations of(P ) as eigenvalue minimization problems can

be found in [28, Sect. 6.6.4.3] and [16]. Similarly, Poljak and Rendl [32] have shownstrong duality

between (2) and an eigenvalue minimization problem which admits a semidefinite formulation (also

cf. [28, 2, 16]). For reasons of consistency, we have stayed within the framework of Nesterov and

Nemirovskii [28].

We have chosen the primal-dual potential reduction algorithm outlined in [28] to solve (P ) and(D). The algorithm is summarized in Fig. 1. It maintains a pair(x; s), where the matrixx is a strictly

feasible solution of(P ) and the matrixs is a strictly feasible solution of(D).
The functionv(u) is derived from the potential function. The components ofv(u) are the loga-

rithmic barrierF (u) = � ln detu and a second term�(hs; ui=hs; xi � 1) which drives(x; s) towards

a point at which the duality gaphx; si is zero. The logarithmic barrierF (u) ensures that the Newton

steps which are used to updatex ands will always remain in the interior of the positive semidefinite
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Algorithm: primal-dual

Input: x (a strictly feasible solution for(P ))s (a strictly feasible solution for(D))� (the required accuracy)

WHILE hx; si > �� = argminfhv0(x); hi+ 12hv00(x)h; hijh 2 Lg� = qhv00(x)�; �i
IF � > 0:34 THEN x := x+ �1+�

ELSE s := ��1hs; xi(�F 0(x)� F 00(x)�)
wherev(u) = F (u) + � � hs;uihs;xi � 1�,F (x) = � ln detx, � = n+ 1:05pn.

Figure 1: The basic primal-dual procedure from [28, p. 140].F 0(X) andF 00(x) denote the vector of

first partial derivatives (gradient) and the Hessian matrix of second partial derivatives ofF at pointx.

The notation forv is similar. The algorithm stops afterO(pn) iterations.
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cone. In other words, incorporatingF (u) (which approaches infinity near the boundary of the posi-

tive semidefinite cone) into the objective function of the unconstrained optimization method used to

determine the next solution, ensures that this solution will always remain a positive definite matrix.

The algorithm uses Newton's method to minimizev(u). In particular,� is the direction in which

the second-order Taylor expansion ofv(u) at x (projected to the feasible plane) is minimized. The

decrease ofv and of the potential function is at least the Newton decrement�. Nesterov and Ne-

mirovskii show [28, Proposition 4.5.2] that as long as� is large enough (� > 0:34), a primal step

in the direction of� is guaranteed to decrease the potential function by at least a constant amount.

Otherwise (� � 0:34), a dual step is guaranteed to achieve this goal. AfterO(pn) steps the potential

function and, therefore, the duality gap are sufficiently small.

The computational cost of each step is dominated by the cost of computing the Hessianmatrix of

second derivativesv00(x) = F 00(x) = x�1 � x�1 and inverting it [28, Sect. 6.4.1], wherea � b denotes

the Hadamard (componentwise) product of two matricesa andb. The matrix inversions are needed

to compute� and the direction of the dual step. Note that it is not necessary to compute the entire

Hessian matrix because all but then diagonal entries ofx are constant. The matrix inversions involved

lead to a complexity of�(n3) operations per step and�(n3:5) operations for the entire algorithm.

We have implemented the same interior-point algorithm in serial on a workstation and in parallel

on the Connection Machine CM5. The serial implementation is written in C and uses LAPACK

routines [4] for the time critical matrix inversions. Due to the fairlyhigh complexity of the algorithm,

the running times become quite large for graphs with more than500 vertices (Tab. 1). The running

time for a 1000 vertex graph is about one day on an SGI Indy (100MHz MIPS R4000 processor,

IRIX 5.0, gcc -O2). However, similar behavior is displayed by other existing codes. Goemans and

Williamson [16] report running times of4692 seconds� 77 minutes on a SUN Sparc 1 for the

widely used code of Rendl et al. [34] and 200 vertex random graphs. The corresponding timefor our

algorithm on an SGI Indi is about3:3 minutes (Tab. 1). For comparison, the MIPS R4000 processor is

only about 5.5 times faster than the Sparc IPC processor (as measured by the SPECfp-92 benchmark:

61 for R4000 vs. 11.1 for Sparc IPC). While this comparison omits some detail, it doesindicate

that our serial implementation – which is the basis for evaluating the performance of our parallel

implementations – is quite efficient. We have used random graphs here not for their intrinsic interest
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but rather to provide a comparison with the running times reported in [16].

The parallel program was implemented on the following CM5: 32 processors, CMOST version

7.4; 32MBytes and four vector units per node; nodes running at 32MHz. The same machine was

used for the implementations described in Sect. 3. The parallel implementation is written in C* [38].

The running time of the algorithm is completely dominated by the cost of the matrix inversions. Very

efficient solutions for this problem exist [20]. Using the LU routines from the CMSSL library [39]

(version 3.2.1), our algorithm achieves speedups of more than31 (over one-node CM5) on a 32-node

CM5. Table 1 compares the running times of the parallel and serial implementations.

3 First Derivative Methods

The interior-point algorithm described in the previous chapter is well suited for dense graphs. How-

ever, its complexity of�(n3) operations per step leads to long running times for large graphs. This is

the case even if the input graph is sparse. Alizadeh [2] notes that the known interior-point algorithms

for semidefinite programming do not take advantage of sparse inputs. (Recently Klein and Lu [25]

have developed a different technique to handle sparse graphs using these methods.) Driven by our

goal to test the quality of the approximation scheme of Goemans and Williamson on large instances

of graphs derived from practical applications, we considered alternative ways of obtaining an optimal

vector configuration. The first derivative method described in this section involvesO(en + n2) op-

erations per step – which isO(n2) for sparse graphs. Thus, we trade the worst-case guarantee of a

polynomial running time for a method which can take full advantage of the sparseness of the graphs

which are derived from typical applications like VLSI design or statistical physics. In practice, this

method is fast and efficient and allows us to solve very large problem instances. We have tested algo-

rithms based on different first derivative methods on a variety of differentgraphs with up to 13,000

vertices. In every single run we have observed fast convergence to within the required accuracy.

First derivative methods for unconstrained optimization (e.g. gradient-descent or conjugate-gradi-

ent) [27, 30, 33] try to minimize a differentiable objective functionf : IRn ! IR by taking a sequence

of steps based only on the value of the function and its gradient. This process terminates when the

value of the objective function is sufficiently small. The simplest example is the gradient-descent
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method:

Algorithm: gradient descent�(f)
choose initial feasible solutionx
WHILE f(x) too largex := x+ �5f(x)

where5f(x) is the gradient off at pointx, and� < 0 is an appropriately chosen constant. The

conjugate-gradient method [33, 26] is another example. For simplicity, we will describe the algo-

rithm in terms of gradient descent. However, as we will parallelize theevaluation of the objective

function and the gradient, our parallelization and analysis do not depend on any particular method

for unconstrained optimization. Using the strong duality property of our problem, we cantest the

stopping condition by computing the duality gap betweenf(x) and the corresponding value for the

dual problem.

3.1 The objective function and the gradient

Problem (1), which is a constrained optimization problem, must be reformulatedas an unconstrained

optimization problem if the methods just stated are to be applied. MaximizingZv is equivalent to

minimizing �Zv = Pi<j wijhvi; vji sinceZv = (Pwij � �Zv)=2. Given a vectorx, let kxk = qhx; xi
be its length. We choose the functiong(v1; : : : ; vn) =Xi<j wij hvi; vjikvikkvjk (3)

as our objective function. Clearly,g is identical with �Zv on the unit sphere. Furthermore,g is inde-

pendent of the norms of thevi. This allows us to drop the side conditionvi 2 Sn. We prove in the

appendix thatg has no local minima. The potential problem of saddle points (which do exist) can be

alleviated by small perturbations.

Computing gradients is straightforward and we give only the final result. Letvki denote thek-th

component of thei-th vector. Then, assumingkvik = 1 (8i 2 V ):@g@vki = vki hvi; Cii � Cik (4)
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whereC is the matrix formed by the column vectorsCi = Xj2adj(i)wijvj; (5)

whereadj(i) = fj 2 [n] : wij 6= 0g, [n] = f1; : : : ; ng, andCik denotes thek-th component ofCi.
The value ofg can be computed as follows:

Algorithm: g operations

1. ComputeC as in (5). 2en
2. Ti = hvi; Cii for all i 2 [n]. 2n2
3. g = Pi Ti n� 1

The second column (operations) counts the number of floating-point operations. The computation of

the gradient5g is quite similar:

Algorithm: 5g operations

1. ComputeTi as before 2en+ 2n2
2. dki = vki Ti � Cik 2n2

Apart from requiring evaluations ofg and5g, the usual unconstrained optimization methods update

the current solutionV by multiplying a correcting termC by a constant� and adding the result toV .

Namely, letV := V + �C. This update operation requires2n2 floating-point operations asV andC
aren� n matrices.

Finally, afterV = (vi) has been updated, eachvi must be normalized (vi := vi=kvik) at a total

cost of3n2 floating-point operations. This normalization is unrelated to the optimization algorithm

and is merely a result of our attempt to save operations in the computation of the gradient. The

normalization relieves us from having to compute norms there. The total number of operations per

step is�(en+ n2), and the space requirement is�(n2).
3.2 The Parallelization and its Analysis

As already mentioned, we parallelize the basic operations used by the unconstrained optimization

algorithms. In particular, we will present and analyze parallel algorithmsfor evaluating the objective

function and gradient.
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The rest of this section will focus on sparse graphs, graphs withe = o(n2) edges. This case

presents obstacles since no efficient general off-the-shelf solutions for sparse graphs are available

(which are better than for arbitrary graphs). No single type of operation dominates the running time –

as did the matrix inversion operation in the previous section. Instead, a number ofdifferent�(n2) op-

erations must be efficiently parallelized. The practically relevant applications for MAX CUT (graphs

derived from VLSI applications [40, 6] and the Ising model) are typically extremely sparse (for ex-

ample,jEj � 2jV j for most of the VLSI graphs in Tab. 5).

The first question to be addressed when parallelizing the computation of the gradient on a dis-

tributed memory parallel machine is the data layout, that is the distributionof the data among the

local memories of the processors. Since for sparse graphs the memory requirements are dominated

by the matricesV = (vi)i2[n] andC (size�(n2)), we focus on these two matrices. The other variables

used by the algorithm have sizeO(e+n) which is small compared to the space required forV andC.

We choose to partition the matrices along the rows. In terms of the algorithm,this means that

each processorq is assigned a setSq of components of then-dimensional vectorsvi. Each processorq stores locally the componentsSq of all vectorsvi and, similarly, allCik for k 2 Sq. Thus, only the

reduction operationsh:; :i (inner product) andk:k (Euclidean norm) require communication.

Figure 2 shows the parallelized components of the gradient-descent algorithm basedon row par-

titioning. The parallel running timetp with p processors can be divided into the timeEp spent on

performing computations and the communication timeCp such thattp = Ep + Cp. Table 2 compares

the number of serial operations from Sect. 1.1 with the number of parallel operationsfrom Fig. 2.

Clearly, in all casesEp � E1=p. Therefore,tp = Ep + Cp � E1p + Cp (6)

3.3 The Communication Cost

All communication operations of our algorithm are of the same type: In the language of Karp et

al. [23], they are sequences ofn “broadcast-with-combining” operations – one for eachvi (i 2 [n]).
Recall that broadcast-with-combining is a communication operation in which each processor con-

tributes an initial valuexi. At the end of the operation each processor receives the result of combining

(or reducing) allxi by a simple operation (e.g. addition). We require this operation to be associative.
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Assign to each processorq a setSq of components

such thatjSqij � jSqj j � 1 for all processorsqi; qj.
operations per processor

Algorithm: parallelg
1. For all q in parallel :8i 2 [n]; k 2 Sq: Cik = Pj2adj(i)wijvkj 2en=p8i 2 [n]: T (q)i = Pk2Sq vki Cik 2n2=p � n
2. ComputeT =Pq T (q) using global communication.GLOBAL COMM.

3. Return
Pi Ti n � 1

Algorithm: parallel5g:

1. Execute steps 1 and 2 ofparallel g 2(en+n2)p � n + GL. COMM.

2. For all q in parallel :8i 2 [n]; k 2 Sq: dki = vki Ti � Cik 2n2=p
Algorithm: parallel normalize:

1. For all q in parallel :8i 2 [n]: T (q)i = Pk2Sq vki vki 2n2=p � n
2. ComputeT =Pq T (q) using global comm. GLOBAL COMM.

3. 8i 2 [n]; k 2 Sq: vki = vki =pTi n2=p + n
Algorithm: parallel update:

4. For all q in parallel :8i 2 [n]; k 2 Sq: vki = vki + �dki 2n2=p
Figure 2: The parallel versions of the operations. Every processorq stores two vectorsT andT (q). Ti
andT (q)i denote thei-th components of these vectors.
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Karp et al. [23] present an algorithm for a single broadcast-with-combining operation which is

optimal in the LogP model. The LogP model [11] uses only four parameters to describe the network:

an upper boundL (latency) on the time needed by a small message to travel across the network from

its source to its destination; the time (overhead) o a processor is engaged in sending or receiving a

message; the minimum time interval between consecutive message transmissions or receptions (gap)g, and the number of processorsp. The inverse ofg is the per-processor bandwidth for short messages.

On many machines, the per processor bandwidth for long messages is several orders of magnitude

higher than1=g. The LogGP model [1] extends the LogP model by introducingG, thegap per bytefor

long messages as an additional parameter. The LogP model reduces to the postal modelof Bar-Noy

and Kipnis [5] (also see Karp [23]) ifo = 0 and the time is rescaled such thatg = 1.

Bar-Noy and Kipnis [5] describe several algorithms for sequences ofm 2 IN broadcast (without

combining) operations in the postal model. One algorithm (PACK) reduces this problem tothe simple

broadcast problem (by considering allm data items as a single large data item), and uses algorithm

BCAST of [5] for the single broadcast. The running time of this algorithm is at most (cf. Bar-Noy

and Kipnis [5, Cor. 8]):2(m+ �� 1) log plog(2 + (�� 1)=m) + 2(m+ � + 1) < 2(m+ �)(1 + log p) (7)

where�, the latency parameter, is the ratio of the time it takes for a message toreach its destination

and the time needed by the originator of the message to send it. In the following, wewill work

with the simpler term on the right-hand side of (7). Asm will be large, the right-hand side is a close

approximation of the left-hand side. We have selected algorithm PACK because it gathers data in long

messages. Bar-Noy and Kipnis [5] describe alternative algorithms which send only short messages

and which are faster in the postal model (which does not distinguish between bandwidths for short

and long messages). However, the LogGP model (and in practice) algorithm PACK is clearly superior

for realistic parameter choices.

The algorithm is easily generalized to broadcast-with-combining by first combining the values

by executing the broadcast algorithm `in reverse' [23]. The running time is twice the value of (7).

Thus, combining (7) and (6), noting that in each gradient-descent step, there are two calls to the

communication algorithm (in `gradient' and in `normalize' ), and that the data elements are eight byte

floating point numbers, one obtains:
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Fact 1 In the LogGP model witho = 0, andp � n, the running time of each step of the gradient-

descent algorithm is at mosttp = E1p + 8(8Gm + L)(1 + dlog pe) : (8)

The postal model and the LogP model ignore the network structure. A few words about this as-

sumption with respect to our application are in order. The requirements of the algorithm just described

are clear: The network must be able to simulate the degree-d broadcast tree, where in our applicationd > 1 should be a small constant. Most common network architectures (e.g. binary tree, hypercube,

mesh, cube connected cycles, butterfly) are easily verified to have degree-d spanning trees and, thus,

satisfy the requirement.

The situation is quite different if the processors (workstations) are connectedby a flat bus (ether-

net). While a single message trivially solves the broadcast problem, the combination problem requiresp � 1 sequential messages as the root processor needs information from each of the otherp � 1 pro-

cessors and only one message can be transmitted at any given time. Thus, there is an upper and lower

bound ofCp = pgm for the time needed for a sequence ofm broadcast-with-combine operations onp processors whereg is the time a single message blocks the network.

Fact 2 For a flat bus (ethernet) network, the running time of each step of the gradient-descent algo-

rithm is at most tp = E1p + 2pgm (9)

Figure 3 displays the resulting predicted speedups for reasonable parameter choices (compare Sect. 3.4

in this work and Sect. 5.2 in [11]).

To illustrate the difference between the two cases, we derive expressions for the number of proces-

sorsp that can be used before the efficiencyX(p) = t1=(ptp) falls below a given constant� 2 (0; 1),
that is we considerp�(n) = maxfp 2 IN : X(p) � 1��g. By (6)X(p) � E1E1+pCp , which is required

to be at least1 � �. Thus, substituting the expressions forE1 andCp derived above and assuminge = �(n) we obtain:

Fact 3 For our algorithm,p� = �(n) in the LogP model. For a flat bus/ethernet,p� = �(pn).
These results show that the algorithm scales linearly (inn) for the more sophisticated network types

like binary trees and hypercubes. For the flat bus, however,p may only grow proportional to
pn.
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Table 1: Running times (in minutes) of the serial (on an SGI Indy) and the parallelimplementation (on

a 32-node CM5) of the interior-point method on random graphs withn vertices and edge probability0:5. n 200 400 600 800 1000

serial 3.3 35 154 450 982

parallel 1.5 5 12 21 40

Table 2: The cost of the serial and of the parallel versions. The term `bc-with-comb' stands for

broadcast-with-combining and is defined in Sect. 3.3.

objective fct gradient normalize updateE1 (serial) 2(en+ n2) + n� 1 2(en+ 2n2) 3n2 2n2Ep (par.) 2(en+ n2)=p � 1 2(en+ 2n2)=p� n 3n2=p 2n2=pCp (comm.) n bc-with-comb. n bc-with-comb. n bc-with-comb. 0
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Figure 3: The speedups predicted by our performance model for larger graphs and machines. Left:

LogGP with parametersG = 2:8 � 10�8 sec/byte= 2:26 � 10�7 sec/double,L = 4:4 � 10�5 sec,d = 2, E1 = (2ne + 7n2) � 10�7 sec. Right: ethernet with parametersg = 1=50; 000 sec/double andE1 = (3ne + 11n2) � 10�6 sec.

18



www.manaraa.com

3.4 Implementation

We have implemented and run the algorithm on a variety of parallel machines, in particular a Con-

nection Machine CM5, an IBM SP2, and a cluster of workstations. The CM5 is described in Sect. 2.

The cluster of workstations consisted of 16 Sparc 2 stations (40MHz clock rate),running Solaris, and

linked by an ethernet (which was free from outside traffic). The IBM SP2 (IBM RS/6000 SP) had

34 nodes. The nodes were RS/6000 based POWER2 thin nodes, running at 66.7 MHz. Each node

was equipped with a data cache of 32 kBtyes, an instruction cache of 64 kBytes, and 128 MBytes of

random access memory. The nodes were running A.I.X. 4.1.4 and the IBM AIX Parallel Environment

(PE) Version 2. An implementation of the Message Passing Interface (MPI) forms part of the PE. The

nodes were linked by IBMs SP Switch.

The program was written in C and directly based on the parallel algorithm of Fig. 2. We used

the message passing interface (MPI) [14] for the global communication operations. In addition, we

optimized our implementation for the CM5, hand coding the instructions for the vector units and

using the CMMD library [38] (version 3.3) instead of MPI. This allowed us to treat each of the four

vector units in each CM5 node as a separate processor. Finally, we used UNIXsockets to implement

the communication operations on the cluster of workstations.

Table 3 displays measured running times for the CM5 and the SP2. The inputs are two dimensional

Ising grid graphs. We have measured the running times for only one class of graphs because the

parallel performance (i.e. the ratio betweent1 andtp (p > 1)) depends only on the numbers of vertices

and edges, but not on the particular structure of the graph. The structure of the graph influences only

the number of gradient-descent steps – which is the same for both the parallel and theserial version.

A technical problem arises when trying to compute the speedup.The larger graphs do not fitinto the

memory of a single processor. Thus, we cannot measuret1 directly. We estimate this time by running

the program on a small number of processors, measuring the execution time for the parallelized parts

of the program (i.e. ignoring communication and non-parallel code) and multiplying this time by the

number of processors used. The result is a lower bound ont1 which yields a lower bound on the

speedup.

Figure 4 compares the measured speedups on the different machines with those predicted by the

LogP model. As predicted by the analysis in the previous section, the speedups for the SP2and
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Table 3: Performance data for the CM5 and SP2 implementations:jV j and jEj are the number of

vertices and edges in the input graph. The running timestp with p processors (vector units for the

CM5) are measured in seconds per gradient-descent step.

CM5 SP2jV j jEj t1 t128 speedup t1 t32 speedup

1600 3200 27.8 0.26 107 2.3 0.09 26

2500 5000 68 0.60 113 6.8 0.25 28

4900 9800 260 2.21 118 30.5 1.01 30

6400 12800 445 3.67 121 52 1.72 30

10000 20000 out of memory 127 4.11 31

12100 24200 out of memory 186 5.98 31

SP2 (predicted)
SP2 (measured)

CM5
WS (predicted)
WS (measured)

p

sp
ee

du
p

30252015105

30

25

20

15

10

5

Figure 4: Speedups of our parallelization of the minimization algorithm on differentmachines.jV j =2500, jEj = 5000
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CM5 are far better than for the workstations (WS) linked by an ethernet. The predicted speedup

for the workstations (WS predicted) is based on (9), except that we used a communication term

of 4pgm (instead of2pgm) to account for the suboptimal broadcast routine in our implementation.

We measuredE1 = 110 seconds and estimateg = 1=50; 000 seconds per double precision float.

(We estimate that about one third of the10 Megabits per second capacity of a standard ethernet is

available at the level of UNIX socket read/write operations, which corresponds to approximately50; 000 double precision floats per second.) Despite this rather crude estimate, the figureshows a

good match between the measured curve and the prediction.

We have estimated the LogGP parameters for MPI on the SP2 by timing the relevant communica-

tion operations. Figure 3 displays our parameter estimates and the predicted speedups based on (8).

The curve `SP2 predicted' in Fig. 4 was obtained using the parameters of Fig. 3. The difference be-

tween this prediction and the measured speedups is less than three percent. This coincidence provides

some evidence for the validity of our model. Figure 5 shows how the speedups improve as the graph

size increases. In this figure, the termprocessorrefers to a CM5 vector unit.

Table 4 compares the numbers of iterations and total running times on sparse graphs of the interior-

point method of Sect. 2 and the algorithm described in this section. Both programs were run on a

32-node CM5 until the duality gap was smaller than0:1%. The inputs were sparse random graphs

with edge probability10=n. The gradient-descent program is several orders of magnitude faster. This

is mostly due to the shorter time per iteration. However, it is interesting to observe that in spite of

its simpler (faster) computations, the first derivative method uses lessiterations than the algorithm

of Sect. 2. In light of the remarks at the end of Sect. 2, we observe furthermore, that this favorable

comparison is not due to potential inefficiencies of our interior-point algorithm and implementation.

The step size� (cf. page 12) was determined by an adaptive scheme which decreases� whenever

a step would lead to a deterioration and otherwise increases� by a factor1 + � with � = 0:02. In

practice, this scheme kept the algorithm from spending much time near saddle points.Testing the

stopping condition by computing the gap between the current value of the objective functionand the

corresponding value for the dual problem involves computation of the largest eigenvalue of a dense

matrix. As this operation is fairly expensive, we did not test the duality gap during the running time of

the algorithm. Instead, we fixed the number of steps to between 200 and 700 (depending on thegraph
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Figure 5: Speedups on the CM5:n = jV j is the number of vertices in the input graph;p is the number

of processors (vector units).

Table 4: Total running times and iteration counts on sparse random graphs (cf. Sect.4) on a 32-node

CM5 of the interior-point algorithm of Sect. 2 and the first derivative method described in this section.

interior-point gradient-descentjV j iterations time iterations time

200 111 2 min. 40 < 1 sec.

400 161 6 min. 45 1 sec.

600 201 15 min. 50 5 sec.

800 231 22 min. 55 9 sec.

1000 251 54 min. 60 15 sec.
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size) and stored the information necessary to compute the eigenvalue gap for the solution returned by

the algorithm. This allowed us to verify that the solution was within the required accuracy after the

algorithm had terminated. We always observed that the gap was far smaller than the0:1% target we

had set and that usually even a far smaller number of iterations would have sufficed.

The vector units required special consideration. As far as the parallelization is concerned, we

have treated the vector units as normal processors. In particular, the components of thevi are split

evenly among the4p vector units and each vector unit works on its components as described in

Fig. 2. All steps of the algorithm except the first step in computing the objective function involve

operations on long regular vectors. They can be directly adapted to the vector units. Step 1 in the

computation of the objective function and the gradient (Fig. 2), the only step which depends on the

input graph, is different. When the input graph is sparse, we assume that it is givenin adjacency list

representation. The input graphs can be arbitrary and so can the lengths of the adjacency lists of the

individual vertices. In particular, many of the adjacency lists can be so short (e.g. length = 2) that

much of the benefit of the vector units is lost. One way to solve this problem is to preprocess the

input graph and transform it into edge representation where the graph is given by the list of all its

edges. Now, the vector units can operate on one long vector, the vector of all edges.However, this

approach leads to read-after-write pipeline hazards if the distance in the edge list between any two

edges which are incident on the same vertex is smaller than the vector length.This problem can be

solved for most edges by preprocessing the edge list. Depending on the input graph, there can be

edges for which such a `schedule' does not exist. However, these edges belong to a set of adjacency

lists whose size is bounded by the vector length which is a small constant. These adjacency lists are

processed individually.

The last step in the GW algorithm is to convert the vector configuration into anactual cut. This is

achieved by generating a random vectorr on the sphere (�(n) operations) and computinghr; vii for

all i (�(n2) operations). Given the data layout used above, these steps are easily parallelized.
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4 Solution Quality

In this last section, we examine how well the GW algorithm approximates the maximum cut size for

a variety of graphs with several thousand vertices. While0:878 is theworst caseperformance guaran-

tee, we are now interested in the approximation quality one can expect in practice when running the

algorithm on typical input graphs. Furthermore, we provide an experimental evaluation of the algo-

rithm on graphs with negative edge weights – a case which is not covered by the0:878 performance

guarantee of the algorithm. By way of comparison, we have also implemented simulated annealing

and the randomized greedy algorithm.

Previous experimental work with the GW algorithm [16, 7, 31, 12] has been limited tomuch

smaller inputs. Our parallel implementation makes it possible to compare thetrends reported previ-

ously with results obtained on much larger graphs.

4.1 The Graphs and the Algorithms

We have tested the algorithm on the following graphs:

1. Graphs derived from circuit design problems: It has been observed [9, 8, 29, 6] that one

of the phases (the layer assignment problem) in the design process for VLSI chips and printed

circuit boards can be reduced to the MAX CUT problem. We have run the GW algorithm on ten

graphs derived from VLSI problems [40].

2. Graphs derived from the Ising model: The Ising model is used in statistical physics to de-

scribe magnetism. A reduction from the problem of finding the ground states (states ofminimal

energy) in an Ising spin glass system to MAX CUT is well known. We model each elementary

magnet as af0,1g-variable and consider only nearest neighbor interactions and interactions

with an external magnetic field. The reduction transforms such a system into agraph which

has one vertex for each elementary magnet. There is one further vertex for theexternal mag-

netic field. By means of the reduction, the cut size found by the algorithm translatesinto an

upper bound on the energy of the ground states and the size of the positive semidefinite solution

translates into a lower bound.
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3. Sparse random graphs:We have tested the algorithm on sparse random graphs in which the

edge probability is set top = 10=n, wheren = jV j. This corresponds to random graph class C

in Goemans and Williamson [16].

The first two graph classes are derived from real world applications of the MAX CUT problem. The

third class is a popular test instance.

We have implemented simulated annealing and the randomized greedy algorithm asa basis for

comparisons. The randomized greedy algorithm of Sahni [37] has been mentioned in Sect. 1.1. In

addition to what is described there, we do greedy improvements of the random cuts.The application

to MAX CUT is straightforward. The set of states is the set of cuts. The objective function is the cut

size. The possible transitions are those which change the cut by at most one vertex (cf. [19] for a

comprehensive study of simulated annealing and its application to the MAX CUT problem).

4.2 Experimental Results

In this section, we report on the results of running the algorithms on the graphs described in the

previous section. The results for the GW algorithm as well as all running times wereport were

obtained by running our gradient-descent implementation on a 32-node Connection Machine CM5.

All running times are reported in minutes. Simulated annealing and the randomized greedy algorithm

were run on SGI Indy workstations. We took care to give approximately the same computational

resources to the three algorithms – making adjustments in the running times for thedifferent number

of processors and processor speeds. Our basis was the running time on the CM5 of GW – which was

dominated by the time needed to find an optimal vector configuration. This time was multiplied by the

number of processors and by a factor accounting for the relative speed of the CM5 Sparc processors

compared to the SGI Indy workstation.

Space limitations have led us to include only three data tables here. The conclusions we draw

from them are consistent with many other experiments we have run and could not include here. Ta-

ble 5 shows the results for the VLSI graphs. The table displays the cut sizes found by simulated

annealing (cutSA), the randomized greedy algorithm (cutRG), and the GW algorithm. The results for

simulated annealing are the best cuts found over five runs of107 annealing steps each. The results for

randomized greedy are the maximum cuts found over20; 000 independent runs. The columnEcutGW
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contains the expected size of a single random cut as described in Goemans and Williamson [16].

Two observations are apparent: On one hand, the random experiment of Goemans and Williamson

produces cuts larger than the randomized greedy algorithm is likely to find even after a large number

of iterations (cf. Sect. 1.1 for the relationship between the two algorithms). On the other hand, the

cuts found by simulated annealing are somewhat larger than those found by the GW algorithm. These

two observations hold for a wide range of different graph classes (we did not find a single counter

example), and are also supported by observations made previously about simulated annealing and

the randomized greedy algorithm. Johnson et al. [19] observe for the related GRAPH PARTITION-

ING problem, that the randomized greedy algorithm performs far worse than simulatedannealing.

Berry and Goldberg [7] perform a similar experimental comparison of severalheuristics – including

simulated annealing.

While it seems clear that the simplest version of the GW algorithm cannot compete with simulated

annealing, it is also clear that there are simple modifications to it which will improve its performance

in practice. Probably the simplest such scheme is to find an optimal vector configuration and then gen-

erate many independent cuts by generating independently many hyperplanes [16]. This is an analogue

to the iterated randomized greedy algorithm. While the iterated randomizedgreedy algorithm sam-

ples cuts from the uniform distribution, the iterated GW algorithm samples cutsfrom the distribution

induced by the semidefinite program which gives larger weight to larger cuts.

Just as taking independent samples under the uniform distribution (iterated randomized greedy)

is not the best way to generate large cuts, one might suspect that there are more effective schemes

than generating cuts by independent random hyperplanes. One possibility is to add the samekind of

Metropolis filter that is used in standard simulated annealing to the procedurewhich generates random

hyperplanes. The result is a simulated annealing version of the basic random experiment of Goemans

and Williamson. The moves (neighborhood) of such an annealing algorithm could be defined assmall

random perturbations of a current hyperplane. Objective functions and cooling schedules could be

the same as in normal simulated annealing.

Column cutGWSA in Tab. 5 shows the results for the simulated annealing version of the GW

algorithm. Now the algorithm does not only clearly win against simulated annealing – it even finds

the (known) optimal cuts for each graph. The time needed to solve the positive semidefinite program
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Table 5: Results for graphs(V;E) derived from circuit layout problems. UB is the upper bound of

the GW algorithm, andcutRG, cutSA, cutGW, andcutGWSA are the cut sizes found by randomized

greedy, simulated annealing, GW, and an extension to GW, respectively. Thecolumntconv displays

the time spent to find a near optimal vector configuration andtcut is the time spent by GWSA deriving

cuts from it. See text for details.

graph jV j jEj UB EcutGW cutRG cutSA cutGWSA tconv tcut
via.c1n 828 1446 6183 5969 4110 6048 6150 0.75 0.17

via.c2n 980 1776 7118 6860 4968 7037 7098 1.00 0.25

via.c3n 1327 2482 6943 6590 4186 6844 6898 1.67 0.42

via.c4n 1366 2608 10111 9860 6156 9900 10098 1.80 0.33

via.c5n 1202 2235 8002 7657 4902 7920 7956 1.48 3.00

via.c1y 829 1750 7798 7535 6102 7746 7746 0.27 0.08

via.c2y 981 4206 8279 7985 6252 8226 8226 0.35 0.10

via.c3y 1328 2845 9585 9110 6550 9502 9502 0.58 0.12

via.c4y 1367 2916 12563 12332 8850 12516 12516 0.62 0.12

via.c5y 1203 2558 10333 9980 6954 10248 10248 0.50 0.12
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is displayed undertconv. The time given to the GW simulated annealing scheme is displayed undertcut.
In addition to finding cuts, the GW algorithm provides one piece of information which none of

the simple heuristics is able to find: an upper bound on the maximum cut size in the graph. Column

UB displays the upper bounds which were derived from the dual solutions. Our corresponding primal

and dual approximations of the optimum are within0:05% of each other and therefore within0:05%
of the true upper bound.

The advantage our simulated annealing version of the GW algorithm had over standard simulated

annealing on the ten VLSI graphs is not universal. Tables 6 and 7 show examples of graph distribu-

tions on which simulated annealing wins. Both distributions are quite similarto the distributions on

which Johnson et al. [19] have also observed simulated annealing to outperform theKernighan-Lin

heuristic: sparse random graphs.

Table 6 shows the results for the second graph class described in the previous section (3D Ising

graphs). Each graph corresponds to a regular three dimensional20 � 20 � 20 grid whose nearest

neighbor interactions are drawn from the standard normal distribution. The parameterh which corre-

sponds to the strength of an external magnetic field is varied between0 and4. Even though the 0.878

performance guarantee does not apply to these graphs due to the presence of negative edge weights,

most of the gaps we observe are within that bound. However, this is not the case for small values ofh.

The results shown in Tab. 7 are for sparse random graphs. The gap size increases with the graph

size and comes close to the 0.878 guarantee. This observation is consistent withthe trend visible in

Goemans and Williamson [16].

Tables 6 and 7 show that simulated annealing outperforms the simulated annealing version of the

GW algorithm on sparse random graphs. One reason is the generally observed good performance of

simulated annealing on sparse random graphs. However, the results are also influenced by some low-

level implementation issues. Simulated annealing, due to its simplicitycan easily be implemented

such that it takes advantage of the sparseness of a graph. In particular, each annealing step can be

executed in time proportional to the degree of the vertex being moved across thecut. However, each

step of our GWSA implementation takes time�(n) as the inner product of twon-dimensional vectors
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Table 6: Results of running the algorithm on graphs derived from three dimensional20 � 20 � 20
Ising systems as described in the text.jV j = 8001, tconv � 50min., tcut � 15min.

h UB cutgw cutSA
0.0 7488 6252.4 6727.46

0.4 9360 8053.0 8537.75

0.8 11485 9996.2 10612.70

1.2 13872 12304.9 12898.70

1.6 16215 14804.1 15339.80

2.0 18764 17509.8 17920.70

2.4 21412 20309.0 20632.20

2.8 24151 23232.0 23462.00

3.2 26967 26157.6 26366.60

3.6 29850 29221.2 29343.80

4.0 32792 32300.7 32381.30

Table 7: Results of running the algorithm on sparse random graphs (edge probabilityp = 10=n).jV j jEj UB cutGW cutSA tcut
1000 5048 3934.4 3603 3686 1.32

2000 9964 7819.8 7114 7307 2.83

3000 14984 11790.2 10625 10994 4.92

4000 19948 15728.7 14162 14684 6.83

5000 24816 19586.5 17578 18225 9.17

6000 29880 23601.5 21196 21937 11.75

7000 35120 27728.6 24904 25763 14.80

8000 39675 31427.4 28210 29068 17.98
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must be computed. Thus, if both algorithms are given the same amount of time, simulated annealing

can perform�(n) times more steps than GWSA. If, on the other hand, both algorithms are run for

the same number of steps, GWSA finds larger cuts than standard simulated annealing. Similarly, if

the input graphs become dense, the advantage of simulated annealing evaporates. Overall, we draw

the following conclusions from our experiments:� The simplest version of GW is a clear improvement over the randomized greedy algorithm.

However, it cannot compete with standard heuristics like simulated annealing.� We only begin to address a more fundamental question about the average case performance

of the GW algorithm: Can the basic random experiment which underlies the GW algorithm

improve performance on commonly studied graph distributions when used as a primitive of a

more complex heuristic? A definitive answer lies outside the scope of this paper. Our results

for the VLSI graphs show that there is some potential.

5 Conclusions

We have studied ways to parallelize the approximation algorithm for MAX CUT by Goemans and

Williamson. An interior-point method is quite efficient for dense input graphs. Parallelizing it

amounts to parallelizing matrix inversion. The first derivative method we have studied is, in prac-

tice, significantly faster for sparse input graphs. We have presented a detailed analysis of the resulting

parallel algorithm in a distributed memory model. We prove linear speedup inthe LogP model. We

compare the behavior of our parallel implementations on different machines with theresults of our

analysis. We show that given an efficient communication algorithm and implementation as well as

high performance parallel machines, the algorithm can be used to solve very large problems with

thousands of vertices.

Finally, we have used the implementations to compare the approximation quality ofthe GW algo-

rithm with two other standard algorithms: simulated annealing and the randomized greedy algorithm.

We conclude that, overall, simulated annealing appears to find larger cuts given comparable amounts

of time. However, we have identified one class of graphs on which the GW algorithmworks signifi-

cantly better than simulated annealing.
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6 Appendix

In general, the main danger of using a gradient-descent method is that of converging to a suboptimal

solution (that is, a local minimum). In this section, we prove that any localminimum that exists has

to be a global minimum, a point in which the objective function has its optimum value. The main

idea of the proof is to map the space of vector configurations into a space of positive semidefinite

matrices and to show for each pointV in the vectors' world that it can only be a local minimizer

if its corresponding positive semidefinite matrix is also a local minimizer. The step from vectors to
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positive semidefinite matrices is the first step in the polynomial time algorithm to find a maximum of

(1) described in Goemans and Williamson [16]. Fori; j 2 V , let yij = hvi; vji, Y = (yij)i;j2V andZy = 12Xi<j wij(1 � yij): (10)

The symmetric matrixY is positive semidefinite. It is easy to see thatmaxZv (subject tovi 2 Sn)

is equal tomaxZy (subject toY symmetric and positive semidefinite andyii = 1 for i 2 V ). Any

local minimizer in the positive semidefinite matrix world is in fact a global minimizer and we can

show that the same is true in the vectors' world. The proof requires mappings with certain properties

between the vectors' world and positive semidefinite matrices. We begin byconstructing the required

mappings.

The Mapping

We begin with a basic fact about metric spaces.

Fact 4 (Royden [36, p.136])Let (X; d1), (Y; d2) be metric spaces withY complete. Letf be a uni-

formly continuous function from a subsetS ofX intoY . Then there is a unique continuous extension�f of f fromS to �S (the closure ofS); that is, there is a unique continuous function�f : �S ! Y such

that �f(x) = f(x) for all x 2 S. Moreover, �f is uniformly continuous.

Fact 5 Under the same conditions as in the previous fact, letf andg : Y ! X be functions such

thatg is continuous andg(f(x)) = x for all x 2 S. Theng( �f (x)) = x for all x 2 �S.

Proof: For x 2 S there is nothing to prove. Givenx 2 �S n S, consider any sequence(xi) in S with

limit x. Then: x = limxi = limg(f(xi)) = g(limf(xi)) = g( �f(x)) 2
Now, we will apply these facts to positive semidefinite matrices. LetPDn be the set of positive

definiten � n matrices all of whose diagonal elements are1 and letPSDn be the set of positive

semidefiniten � n matrices with ones on the diagonal. Furthermore, letV CTn be the set ofn � n
matrices whose column vectors have length1, (i.e. lie on the unit sphere). Let@Pn = PSDn n PDn.

We can consider all these sets as metric subspaces of(IRn2;d) whered is the Euclidean metric.

35



www.manaraa.com

Fact 6 V CTn is closed.PSDn is bounded and closed.PSDn is the closure ofPDn.

Let g : V CTn ! PSDn be given byg(V ) = V TV . Note thatg is continuous. The Cholesky de-

compositionc (see Press, Flannery, Teukolsky, and Vetterling [33] for details) decomposes a positive

definite matrixY into a lower-triangular matrixV = c(Y ) 2 V CTn such thatV TV = Y = g(V ).
The Cholesky decomposition is continuous because it is the composition of continuous functions [33].

Fact 7 The functionc : PDn ! V CTn computed by the Cholesky decomposition has a continuous

extensionf : PSDn ! S, whereS = f(PSDn) � V CTn is the range off . Furthermore,f is a

homeomorphism. Its inverse is the restriction ofg to S.

Proof: V CTn is closed (Fact 6) and thuscomplete, since it is a closed subspace of the complete spaceIRn2 (Rosenlicht [35, p.52,53]).PSDn is a closed, bounded subspace ofIRn2 (Fact 6). Therefore,

it is compact ([35, p.58]) and, hence, sincef is continuous, it isuniformlycontinuous ([35, p.58]).

Thus, by Fact 4, and sincePSDn is the closure ofPDn (Fact 6),c has a unique continuous extensionf : PSDn ! V CTn.

By the definition of the Cholesky decomposition,g(f(Y )) = Y for all Y 2 PDn and by Fact 5

and sinceg is continuous, this is true even for allY 2 PSDn. 2
The Correspondence between local Minima

Definition 1 Given a functionf : X ! IR, a pointx 2 X is a local minimizerof f if9� > 08y 2 B�(x) : f(y) � f(x) (11)

whereB�(x) be the open�-ball aroundx.

Recall from the description of the algorithm the definition ofZv (the objective function in the unit

vector world) andZy (the objective function in the positive semidefinite world).

We want to show that ifV is a local minimizer forZv theng(V ) is a local minimizer forZy. The

next Fact is the main step in the proof.

Fact 8 Let (X; d1) and (Y; d2) be metric spaces andh : Y ! S � X a homeomorphism (whereS = h(Y ) is the range ofh). LetZx : X ! IR andZy : Y ! IR be functions such thatZx(x) =Zy(h�1(x)) for all x 2 S. If x 2 S is a local minimizer ofZx thenh�1(x) is a local minimizer ofZy.
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Proof: Let x 2 S be a local minimizer ofZx. That is, let there be� > 0 such thatZx(z) � Zx(x) for

all z 2 B�(x). Sinceh is continuous, there is a� > 0 such that for allz in a �-ball aroundh�1(x),h(z) is in the�-ball aroundh(h�1(x)) = x. Therefore, for all suchz:Zy(z) = Zy(h�1(h(z))) = Zx(h(z)) � Zx(x) = Zy(h�1(x)) 2
One last step is needed before Fact 8 and Fact 7 can be combined to yield the desired result. Note

that these two facts cover only the case in which the local minimizer ofZv lies inf(PSDn). We cover

all otherV 2 V CTn by mapping them intof(PSDn) by means of an appropriate homeomorphism.

Fact 9 For everyV 2 V CTn there is a �V 2 f(PSDn) � V CTn and a homeomorphismkV :f(PSDn) ! kV (f(PSDn)) such thatkV ( �V ) = V and Zv(W ) = Zv(k�1V (W )) for all W 2k(f(PSDn)).
Proof: Given a description of the Cholesky decomposition [33], it is not hard to see thatf(PSDn) = f(aij) 2 V CTn : a11 = 1; aii � 0 (i � 2) andaij = 0 for j > ig: (12)

We can interpret the columns ofV 2 V CTn as coordinates of unit vectors w.r.t. the standard or-

thonormal basis ofIRn.
For each matrixV 2 V CTn there exists an orthonormal basisBV such that the coordinates of�V with respect toBV of the column vectors ofV have the form of (12). In other words, there

exists a basisBV and �V 2 V CTn such thatV = BTV �V and �V 2 f(PSDn). If the columns ofV
are linearly independent,BV can be found by applying Gram-Schmidt orthonormalization toV . As

Gram-Schmidt orthonormalization defines a continuous function (because it is the composition of

continuous functions), the construction can be extended to all ofV CTn using Fact 4.

We can takekV as the restriction tof(PSDn) of the linear map defined byBTV . Clearly,BV
is invertible, kV and its inverse are continuous, andkV ( �V ) = BT �V = V . Furthermore, askv
corresponds to a change of basis, the lengths and angles of the vectors are unchanged. That is,Zv(W ) = Zv(k�1V (W )) for all W 2 k(f(PSDn)). Thus,kV is an appropriate homeomorphism.2
Fact 10 Each local minimizerV of Zv is in fact a global minimizer. Furthermore,Zv(V ) � Zy(Y )
for all Y 2 PSDn.
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Proof: Any local minimizerV 2 V CTn is also a local minimizer inkV (f(PSDn)), andkV � f
is a homeomorphism with the properties required in Fact 8. Now, by Fact 8 withX = V CTn,S = kV (f(PSDn)), Y = PSDn, andh = kV �f , we have that(kV �f)�1(V ) is a local minimizer ofZy. But asPSDn is convex andZy is a convex function,(k � f)�1(V ) is indeed a global minimizer

of Zy (Gruber and Wills [17, p.632]). Finally, everyV 2 V CTn can be mapped viag to aY 2 PSDn
such thatZy(Y ) = Zv(V ) and vice versa (viaf ). 2
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